
www.manaraa.com

Studies in Computational Intelligence 867

Witold Pedrycz
Shyi-Ming Chen   Editors

Development 
and Analysis 
of Deep Learning 
Architectures



www.manaraa.com

Studies in Computational Intelligence

Volume 867

Series Editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland



www.manaraa.com

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

The books of this series are submitted to indexing to Web of Science,
EI-Compendex, DBLP, SCOPUS, Google Scholar and Springerlink.

More information about this series at http://www.springer.com/series/7092

http://www.springer.com/series/7092


www.manaraa.com

Witold Pedrycz • Shyi-Ming Chen
Editors

Development and Analysis
of Deep Learning
Architectures

123



www.manaraa.com

Editors
Witold Pedrycz
Department of Electrical
and Computer Engineering
University of Alberta
Edmonton, AB, Canada

Shyi-Ming Chen
Department of Computer Science
and Information Engineering
National Taiwan University of Science
and Technology
Taipei, Taiwan

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-030-31763-8 ISBN 978-3-030-31764-5 (eBook)
https://doi.org/10.1007/978-3-030-31764-5

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-31764-5


www.manaraa.com

Preface

The paradigm of deep learning has achieved a wealth of successes, came with a
plethora of concepts, methodologies, and ensuing algorithms and applications.
Today, we are witnessing visible progress in this dynamically growing area. The
growing interest is present in academe and industry, business, healthcare, envi-
ronment science, and many others.

Ten chapters, forming this volume, are a genuine reflection of the diversity and a
visible spectrum of algorithms and applications which make the underlying idea of
deep learning so attractive and heavily researched nowadays. The topics covered here
span a plethora of topics. Chapter “Direct Error Driven Learning for Classification in
Applications Generating Big-Data” elaborates on mechanisms of learning carried out
in the environment of big data; yet another timely topic quite visibly associated with
deep learning. Processes of sensor design are discussed in the chapter “Deep
Learning for Soft Sensor design”. The application of deep convolutional networks to
healthcare is covered in the chapter “Case Study: Deep Convolutional Networks in
Healthcare”. Domain adaptation for regression is presented in the chapter “Deep
Domain Adaptation for Regression”. Applications to autonomous driving, speaker
recognition, baby cry detection, industrial control, wireless communication, and text
analysis, the chapters “Deep Learning-Based Pedestrian Detection for Automated
Driving: Achievements and Future Challenges”–“Identifying Extremism in Text
Using Deep Learning”, are the testimony of a wealth of usages of deep learning.

We would like to express our thanks to Prof. Janusz Kacprzyk, the Series
Editor-in-Chief, for his ongoing encouragement and support when realizing this
publishing project. We are indebted to the professionals at Springer; the team has
made the overall production process smooth and efficient.

Edmonton, Canada Witold Pedrycz
Taipei, Taiwan Shyi-Ming Chen
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Direct Error Driven Learning
for Classification in Applications
Generating Big-Data

R. Krishnan, S. Jagannathan and V. A. Samaranayake

Abstract In this chapter, a comprehensive methodology is presented to address
important data-driven challenges within the context of classification. First, it is
demonstrated that challenges, such as heterogeneity andnoise observedwith big/large
data-sets, affect the efficiency of a deep neural network (DNN)-based classifiers.
To obviate these issues, a two-step classification framework is introduced where
unwanted attributes (variables) are systematically removed through a preprocessing
step and a DNN-based classifier is introduced to address heterogeneity in the learn-
ing process. Specifically, a multi-stage nonlinear dimensionality reduction (NDR)
approach is described in this chapter to remove unwanted variables and a novel opti-
mization framework is presented to address heterogeneity. In NDR, the dimensions
are first divided into groups (grouping stage) and redundancies are then systemati-
cally removed in each group (transformation stage). The two-stage NDR procedure
is repeated until a user-defined criterion controlling information loss is satisfied. The
reduced dimensional data is finally used for classification with a DNN-based frame-
workwhere direct error-driven learning regime is introduced.Within this framework,
an approximation of generalization error is obtained by generating additional sam-
ples from the data. An overall error, which consists of learning and approximation
of generalization error, is determined and utilized to derive a performance measure
for each layer in the DNN. A novel layer-wise weight-tuning law is finally obtained
through the gradient of this layer-wise performance measure where the overall error
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is directly utilized for learning. The efficiency of this two-step classification approach
is demonstrated using various data-sets.

Keywords Deep learning · Big-data · Dimensionality reduction · Learning regime

1 Introduction

The explosion of digital data has highlighted the need for sustainable analysis meth-
ods in many applications [9] such as fault diagnostics, object recognition and others.
For instance, in the problem of classification, many big/large data-sets are com-
monly found and need to be analyzed. These data-sets are characterized by large
(n, p), where n refers to the total number of data-points while p denotes the total
number of dimensions in the data set. To obtain reasonable efficiency while analyz-
ing such data-sets several associated challenges must be addressed as Big-data-sets
are distinguished by high dimensionality where redundant dimensions are observed
[6, 12].

When high dimensionality is mixed with massive sample sizes, there is a need for
distributed storage [51]. As a result, one must rely upon data-samples for sustainable
analysis. In the absence of an intelligent approach to aggregate information across
these data-samples, several complications, including experimental variation and sta-
tistical bias can be observed [9]. In addition, with an increase in the data-dimensions,
the number of data points available at any one storage unit becomes smaller [51].
Due to this, one may observe irregular or incorrect estimation of important statistical
parameters thus increasing error [9] which refers to the challenge of heterogeneity.

A few of these challenges can be addressed using a deep neural network (DNN),
where the parameters of a parametric map are estimated by minimizing a perfor-
mance measure defined according to the problem at hand. However, as the number
of parameters in a parametric map scales very quickly with data dimensions [9],
there are estimation errors. To obviate these issue, dimension-reduction procedures
are commonly utilized.

Popular dimension-reduction approaches including principal component analy-
sis (PCA) [55], factor analysis [22] and others [22] rely on correlation or covari-
ance matrices. However, it is not possible to estimate dependencies efficiently [22]
because correlation matrices are either low rank or computationally expensive when
high dimensional data-sets are considered. Overall, traditional dimension-reduction
approaches [22, 55] are inefficient in large dimensional scenarios due to a one-step
mapping common with these approaches.

On the other hand, heterogeneity and noise can [9] adversely impactDNN learning
where an increase in generalization error is observed. In addition, a common way of
learning parameters in a DNN-based approach is stochastic gradient descent (SGD)
[29]. As SGD-based learning [29] can suffer from unstable learningwhen the number
of layers in the DNN is very large [36], the traditional learning process is also
inappropriate for big-data classification.
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To alleviate these issues, this chapter addresses the impact of big-data challenges
by (1) reducing the generalization error due to heterogeneity and data-noise via a
novel classification framework, (2) improving the learning efficiency in the presence
of unwanted dimensions by using a dimension reduction approach prior to classi-
fication, and (3) mitigating vanishing gradients observed with traditional SGD by
introducing a novel learning scheme.

A two-step process is introduced in this chapter. The first step in this procedure
is nonlinear dimension-reduction (NDR) where the issue of unwanted dimensions is
addressed while incorporating nonlinear relationships among dimensions. In NDR,
the p attributes are first organized into groups. In each group, dependencies among
the attributes are measured through distance covariance [47], that captures nonlinear
dependencies among attributes. Next, a singular value decomposition (SVD)-based
low-dimensional approximation is estimated for each group. Once every group is
transformed, the attributes are reorganized to form groups and transformed again.
During the transformation process, the group-wise organization is performed by
utilizing the magnitude of singular values. A singular value-based user condition
is introduced to determine the number of dimensions that must be extracted from
the data. The criterion also acts as a stopping condition for the dimension reduction
process.

Using the data in the reduced dimensions, a DNN-based classifier is employed
in the second step of classification. The classifier is designed in such a way that an
approximate generalization error is minimized as part of the optimization process.
The approximation of generalization error is obtained by introducing synthetic dis-
tortions in a neighborhood around a data-sample.A learning problem is then designed
to estimate the parameters of the classifier to minimize the overall cost comprised of
learning and approximate generalization errors.

To mitigate the issue of vanishing gradients, a direct error-driven learning (EDL)
regime is introduced where the weights at each layer of the DNN learn directly
through the overall error. To enable this learning, a cost function for each layer in
the DNN is defined as a function of the overall cost. The optimization procedure
is designed in such a way that the learning at each layer is independent of other
layers in the DNN. Finally, to update the parameters of the dimension-reducing
transformation, novel batch-wise updates are introduced.

The two-step classification framework presented in this chapter can be thought
of a combination of two deep architectures where the first block removes unwanted
dimensions and the second block acts as a classifier to the data-points. In addition,
both these block address important challenges that arise while analyzing big-data and
support each other to provide efficient classification. The efficiency of the overall
approach is demonstrated using many big-data sets. In the next section, the notations
and other preliminaries are discussed.
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2 Background and Preliminaries

In this section, the mathematical background is first described and the problem under
consideration is formulated and a summary of all the notations is provided in Table1.
To start, consider any data generating processwhere x ∈ R

n×p denotes a data sample.
Consider now the objective of determining whether the system is at healthy state or
at a fault through a map φ(.). The purpose of the map is to transform the data-sample
into probability domainwhere themagnitude of probabilities indicates category/class
corresponding to a data-point. The overall learning process can then be defined as
that of estimating this map through a parametric form given a training data-set X
and its labels Y . Formally, it is of importance to evaluate

p(x ∈ �m |X ), (1)

where �m with m = 1, 2, 3, · · · ,F denotes the populations for the corresponding
classes. Any typical parametric map can be used to evaluate these probabilities and
examples include neural networks, spline function and others [4].

In this chapter, DNN is discussed as a parametric map for evaluating these proba-
bilities. An example of such a classification problem can be seen in Fig. 1. Formally,
one may first assume that φ(.) can be approximated through a DNNwith appropriate

Table 1 Notations

Notation Meaning

X Data-set

F The total categories

(n, p) Total number of sample points, total number of dimensions

i,m, l Index for different levels in the approach with m, l defining
indexes for the paper

A, B, Ã, B̃ Distance matrices and double-centered matrices

C Distance correlation matrix

λ Singular-values

M The total no. of batches in the data

j Index for the attributes

t : 1, · · · , T (i) Group index

κ
(i)
t , η(i)

t Estimated number of dimensions to be extracted and the
total number of dimensions

α The variation that must be captured in a group

(.)(i) Number of layers in the DNN

W , Ŵ Ideal and estimated weights

k Iteration index in the learning phase

ε The approximation error

f (l), f or l = 1 · · · d Layer-wise activation functions with d layers
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Fig. 1 Illustration for the
classification problem

capacity. Let the weights be denoted as θ̂ = [Ŵ (1) · · · Ŵ (d)] where layer-wise bias
is included in the weights. Next, assume that an ideal set of weights exists for this
approximation and write ŷ(x) = ŷ(x; θ) + ε, implying

ŷ(x) = f (d)(Ŵ
(d) · · · ( f (1)(Ŵ

(1)
(x))))) + ε. (2)

Let f (l), for l = 1 · · · d denote the layer-wise activation functions with d denoting
the total number of layers in the DNN. The term ε represents the approximation error
which is a function of the capacity of the DNN and can be assumed constant as shown
in [34]. The following assumptions are necessary for solving the learning problem.

1. The samples are obtained in such a way that they are independently and identi-
cally distributed.

2. Data-distribution in the training phase is similar to the test phase.

With these aforementioned assumptions being true, learning the weights of the
DNN involves minimizing a cost function Jo(.) [29] defined as a function of the
expected value of the difference between ideal output(labels) and the DNN output.

Remark 1 In traditional machine learning setup, the feature extraction map and the
classifier map is designed separately. In such a design, one could look at the centroid
of the data-points belonging to each class to determine classes. In aDNN-based setup,
these centroids are decided prior to the learning procedure and the optimization is
designed to force the DNN output to become as close as possible to these prefixed
centroids. Usually, the number of outputs in DNN are equal to the number of classes
and each axis in the output space of the centroid is chosen to be a centroid to the
class.

For this discussion, assume k ∈ [1, N ] be the iteration index for the learning phase
where N is the total number of iterations. Let the difference between the labels and
the DNN output be denoted as el (learning error) such that

E[el(k)] = E∀x∈X , y∈Y [ y − ŷ], (3)

where E[.] is the expectation operator and y ∈ R
F×n represents the ideal output

(labels) for φ(.). Let the total error that includes the learning error and the approxi-
mation error be given as
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E[e](k) = E[el ](k) + ε. (4)

The overall cost can be obtained by squaring the total error resulting in

Jo = E[e]T E[e] = E[el]T E[el] + 2εT E[el] + εT ε. (5)

The notation for iterations in Eq. (5) is suppressed from hereon.

Remark 2 In this chapter, the discussion follows the use of quadratic cost, however,
one may switch to the cross-entropy cost in practical situations.

Note that the first term in the overall cost function is the empirical error obtained
through the data sample. The second term is the projection of the empirical error on
the approximation capacity of the DNN and this term can be understood as the cost of
generalization. The last term is basically the cost due to the approximation capacity
of the DNN. With these observations, one can rewrite the overall cost by denoting
the empirical cost as Jemp = E[el]T E[el], generalization cost as Jgen = 2εT E[el ]
and Japx = εT ε being the approximation cost.

Jo = Jemp + Jgen + Japx . (6)

Typically in practical scenarios, Jemp is the only measured quantity in the learning
phase and the unknown quantities that is Jgen and Japx are usually assumed small
and bounded. Within these constraints Jemp is minimized during learning [4]. As a
result, a major research problem in the literature is to design the DNNmodel in such
a way that Jgen is kept as small as possible. However, in the presence of big-data, the
learning process does not remains standard and Jgen can move out of bounds. One
common scenario, where this will happen is the case when the assumption of training
and test distribution being similar is violated. Usually, the sampling process has to
ensure that the training data-set well represents the data-distribution. However, the
constraints of computing would not usually allow a sample that can densely represent
a large dimensional space. The resulting problem can be observed with an increase
in generalization error because the training set and the testing set are not similar
anymore.

To further elaborate the issue, consider the analysis of MNIST data-set with a
three-layer neural network [29]. For illustration, redundant dimensions are synthet-
ically introduced into the data and illustrate the results in Fig. 2b. One may observe
that there is a reduction in accuracy with an increase in unwanted dimensions in the
data. This increase in error is generally reflected in an increased Jemp.

Next, for illustration of heterogeneity, consider big-data to be collected from
an attribute and let it be stored at multiple locations where X with mean μ0 can be
sampled from any of the available locations. One can observe thatX does not explain
all the characteristics of � as observed in Fig. 2a. Consequently, methodologies that
learn fromX does not capture the overall distribution� fully. Due to this, erroneous
predictions are observed and this is reflected in an increased Jgen .
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Fig. 2 a Histograms of ψ,X with X B b Accuracy corresponding to the number of unwanted
dimensions

Fig. 3 Two step analysis process

In summary, the challenges introduced by the data are reflected in Jgen and Jemp.

With these observations, it has been demonstrated that the presence of unwanted
dimensions in the data introduces errors in classification. The main contribution of
this chapter is to develop ways to address these challenges effectively. To address
these challenges, a two step framework as illustrated in Fig. 3, is utilized.

These challenges have been independently addressed in the literature but not in a
satisfactory manner. The related literature is discussed next.

2.1 Related Work

Amost common way of addressing the challenge of noisy dimension is through fea-
ture extraction approaches. Several dimension-reduction techniques such as Isomap
[2], LLE [39], Hessian LLE [8], Laplacian eigen-maps [3] and its variants [10]
including kernel PCA [42], have used to this end. These methodologies discover
the intrinsic geometric structure of high-dimensional data. In [12], the authors show
that high dimensional spaces are sparse and suffer from distance concentration [12]
which introduces complications while capturing the geometric structure.

To address the problem of computational disadvantages and imperfect estima-
tion in large dimensional scenarios, divide-and-conquer mechanisms for dimension
reduction were proposed in [1, 17, 49, 56], where the authors have shown that in
many cases, known application-specific relationships and natural groupings can be
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exploited for efficient dimension reduction. However, such approaches [1, 17, 49,
56], require prior knowledge of these relationships to enable organization, which
may not be available in Big-datascenarios.

In traditional dimension reduction approaches [1–3, 7, 8, 10, 11, 17, 21, 23,
39, 42, 49, 56], one-step mapping is performed to reduce dimensions. Since this
approach is computationally unfriendly when the dimension of the original data is
very large,it is not feasible in Big-datascenarios.

In contrast, amulti-step dimension-reduction approach is developed in this chapter
where the dimension reduction process process does not involve a one step mapping.
While standard dimension-reduction approaches require the practitioner to specify
the number of dimensions to be extracted from the data. In contrast, the user only
specifies the percentage of information to be retained in NDR and NDR can estimate
the number of dimensions to be extracted from the data. In the dimension-reduction
approaches mentioned earlier [1–3, 7, 8, 10, 11, 17, 21, 23, 39, 42, 49, 56], new
information cannot be incorporated during analysis. Therefore, [1–3, 7, 8, 10, 11, 17,
21, 23, 39, 42, 49, 56], one must re-update the dimension reducing transformation
or ignore the new information [11, 21, 23]. Both of these scenarios are inefficient.
In contrast, batch-wise updates re introduced in this paper.

To address the challenge of heterogeneity common with classification regimes,
cross-validation methods [46], norm regularization [33] and dropouts [45] are com-
mon. However, these methods [33, 45] are heuristic and do not guarantee perfor-
mance.On the other hand, hyper-parameters could be selected based on upper-bounds
derived through rigorous mathematical analysis using Vapnik-Chervonenki’s dimen-
sions, Radmacher complexity or uniform stability [19, 53]. However, this process is
often impractical in Big-datacases. In brief, the approaches present in the literature
[16, 45, 46, 53] are either heuristic and do not guarantee low generalization error or
require complex mathematical analysis. By minimizing generalization error in the
learning procedure, the impact of heterogeneity and data-noise is explicitly mitigated
in contrast with [14, 16, 38, 45, 54].

A common learning regime used to optimize the weights of a DNN is SGDwhich
suffers from the issue of unstable learning signals [13, 36]. Gradient scaling through
ReLU activation function [36, 41], adaptive learning rates [25] and L1/L2 regular-
ization [15] are common ways of addressing this issue. However, these techniques
are only work-around to the real issue of unstable gradients.

To overcome the issue, target propagation was introduced in [30] where auto-
encoders are used to estimate targets at every layer. However, it is difficult in most
cases to define targets at each layer and the computational overload of maintaining
auto-encoders at every layer is large. To alleviate this issue, direct feedback alignment
was proposed in [35] where the error is directly used for learning at every layer.
Although impressive results havebeen reported in [35], several drawbacks exist. First,
the approach allows the learning signal to progress in random directions. Second,
zero-derivative activation functions would impede learning.

In contrast with traditional gradient descent [19, 33, 36], the feedback is designed
to ensure that the magnitude of the learning signal does not vanish while the
update rule is generic enough to solve any cost function. In contrast with [35], the
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user-defined matrix is specifically designed to propel learning in the directions of
steepest descent and the learning is not inhibited even when the activation function
is saturated.

As a solution to this issue, a two step approach is introduced in this chapter where
dimensions in the data are reduced prior to classification. A pictorial representation
is given in Fig. 3. Recently, several researchers [20, 24, 44, 55] have introduced
techniques based on two-step approach for fault diagnostics and classification. In
these efforts, popular dimension reduction methods such as principal component
analysis (PCA) [22, 55], factor analysis are frequently used for reducing dimensions
and a standard classification setup is utilized for final detection.

However, thesemethods [20, 24, 44, 55] rely on correlation or covariancematrices
for dimension reduction. Due to the challenges posed by high dimensional spaces
discussed before, it is not possible to estimate these matrices correctly. Moreover,
the process is computationally in-feasible.

To address the problem of computational disadvantages and imperfect estima-
tion in large dimensional scenarios, divide-and-conquer mechanisms for dimension
reduction were proposed in [1, 17, 49, 56], where the authors have shown that in
many cases, known application-specific relationships and natural groupings can be
exploited for efficient dimension reduction. However, such approaches [1, 17, 49,
56], require prior knowledge of these relationships to enable organization, which
may not be available in big-data scenarios. In the next few sections, these challenges
are addressed independently. The challenge due to unwanted dimensions is discussed
first.

3 Nonlinear Dimensionality Reduction

It has been demonstrated that dimension reduction is inherently inefficient because
they depend on a measure of dependence that does not work well when nonlinear
relationships are presents or when the number is dimensions is very high.

Since independence of random variable cannot be reliably determinedwhile using
Pearson correlation, there is a need for a novel dependence measure. One option is
the use of distance covariance (DC) that was introduced in [47]. For the purpose
of completeness, a brief description of this dependence measure is provided next.
However, for additional details on distance covariance, please refer to [47] and the
references therein.

Let there beonly twoattributes in the data that is (p = 2) and let a vector fromX be
described as [a b].Consider the problem of determining the strength of relationship
between a and b. To this end, define a = [a1 · · · an]T and b = [b1 · · · bn]T .

Next, determine the pairwise distances between elements of a and b such that they are
denoted by A and B respectively. Note that A = {Am,l : m, l = 1, 2, · · · n} is the set
of pairwise distances between all elements in a and B = {Bm,l : m, l = 1, 2, · · · n}
is between elements of b. Considering euclidean distances to evaluate distances, for
any two elements m and l, one can write Am,l = (am − al)2 and Bm,l = (bm − bl)2.
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Let (.)m. describe the mth row in (.) along with (.).l describing the lth column in (.).

Lets double center the pairwise distance matrices to get

Ãm,l =

⎧
⎪⎨

⎪⎩

Am,l − 1
n 1

T
n (A).l−

1
n (A)m.1n + 1

n2 1
T
n A1n

0

B̃m,l =

⎧
⎪⎨

⎪⎩

Bm,l − 1
n 1

T
n (B).l−

1
n (B)m.1n + 1

n2 1
T
n B1n m �= l

0 m == l,
(7)

where the column vector is denoted as 1n with length n. With these notation, the
sample distance covariance/correlation can now be defined.

Definition 1 Given finiteness of second order moments for a and b, one can define
a sample estimate of distance covariance νa,b

n as

νa,b
n = 1

n2
1Tn ( Ã � B̃)1n, (8)

where the Hadamard product is denoted by � and the vector of ones is denoted by
1n with size n. One may write the squared sample distance correlation r a,bn as

r a,bn = νa,b
n√

νa,a
n νb,b

n

. (9)

Using distance covariance/correlation as a measure of dependence among any two
dimensions, a dimension reduction process is developed next that is effective in large
dimensional cases and does not suffer from the rank deficiency problem.

The basic idea behind this approach is to group the dimensions together such that
the size of the group is smaller than the number of data-points and then transform
these groups to reduce dimensions. This grouping and transformation process is to
be continued for multiple steps or till the stopping criterion is satisfied. Thus, the
overall methodology can be divided into I steps where each step is composed of two
stages, the grouping stage and the transformation stage. The notation indicating the
step index is i and the value of I is determined based on the number of dimensions
that must be extracted from the data or the stopping criterion. Before presenting
NDR, some preliminary notations are established.

Let there be M batches in the data where n = n1 + n2 + · · · + nM and let bq
represents a batch of data with q as index. It follows that the data-set is composed of
M batches andX = {∪M

l=1X l}. LetX 1 denote a batch of data and consider the data
to consists of eight dimensions such thatX 1 = X (1) = [x(1)

1 · · · x(1)
8 ] where x(1)

j

represents the j th column in X (1) and x(1)
j denotes a vector of size n1.The superscript

in the symbols defined before denote the step in the dimension reduction procedure.
First, the overall approach(both NDR and the DNN) is discussed using one batch
of data and then in the end information is aggregated across multiple batches. Each
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step in NDR can be described as a composition of two stages and discussion begins
with the grouping stage at the first step.

3.1 Stage 1: Groupings at the First Step i = 1

At the first step, there is no information about any relationships in the data, therefore,
the dimensions are grouped at random. First, group the eight dimensions in the
example as (1, 2), (3, 4), (5, 6), (7, 8) where (x(1)

1 , x(1)
2 ) forms the first group with

t = 1 and (x(1)
3 , x(1)

4 ) forms the second group with t = 2 and so on. If any predefined
relationships exist, the practitioner may define these groups accordingly. Let the
data-batch at each ith step within the tth group be denoted as X (i)

t and initiate the
transformation stage.

3.2 Stage 2: The Transformation

The basic idea of transformation is to evaluate the distance covariance (DC) among
all dimensions in every group and reduce dimensions through the SVD of distance
covariance. To enable this, letC(t)

i denotes theDCmatrix at any step i and the group t.
For the first step in our illustrative example i = 1 and t = 1, 2.Using the DCmatrix,
the data is transformed in such a way that redundant attributes are minimized and
the variance is maximized [23]. In other words, important dimensions (determined
by their respective variance) must remain at the end of the transformation. This can
be achieved by retaining the dimensions corresponding to the large singular-values.
Thus, define the SVD of C(i)

t as

C(i)
t = U (i)

t �
(i)
t V (i)

t
T
. (10)

Note that the singular-valuesC (i)
t can bewritten asλt,1 ≥ λt,2 ≥ · · · ≥ λt,η(i)

t
≥ 0 and

�
(i)
t = diag(

√
λt,1,

√
λt,2, · · ·

√
λt,η(i)

t
) with U (i) and V (i) representing an orthonor-

mal transformations (singular-basis).
Once, the SVD for a group is known, one may project the data in the group onto a

low dimensional space. However, to determine the size of the projected space, a user-
defined threshold denoted as α/100 is utilized. Here α denotes the total information
that must be retained from a group in the data. To enable this, first normalize the
singular-values such that they sum to one and retain the dimensions corresponding
to the largest κ(i)

t singular-values. The number of dimensions that is κ(i)
t , are selected

in such a way that the cumulative sum of these corresponding singular-values is
greater than or equal to α/100. Once, the size of the projected space is determined,
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a κ(i)
t −rank approximation of SVD is derived to estimate the projection [50]. Based

on the explanation given above, κ(i)
t can be mathematically written as

κ(i)
t = min{ j :

j∑

m=1

λt,m
∑η(i)

t
l=0 λt,l

≥ α

100
, j = 1, · · · , η(i)

t }, (11)

where η(i)
t denotes the total attributes in a group t at level (i). The low dimensional

approximation corresponding to C(i)
t is then computed [50] and denoted as Ĉ

(i)

t =
Û

(i)
t �̂

(i)
t (V̂

(i)
t )T . The term Û

(i)
t represents the singular-basis of rank κ(i)

t and �̂
(i)
t

represents a diagonal matrix with κ(i)
t singular-values.

For the current example, let α = 95% and assume that the data-vectors are pro-
jected onto a one dimensional space. The singular-basis for the low dimensional
approximation provides the transformation parameters to enable this projection.
Finally, the process of evaluating the DC matrix, calculating the low dimensional
approximation and projection of the data is completed for each group at step i .

Formally, let P (i)
t = Û

(i)
t denote the transformation for each group and derive a

cumulative transformation as

X̂
(i+1) = {X (i)

t P (i)
t , t = 1, 2, · · · T (i)}

= [X (i)
1 P (i)

1 , X (i)
2 P (i)

2 , · · · , X (i)
T (i+1) P

(i)
T (i+1) ]

= X (i)P (i),

(12)

where X (i) = [X (i)
1 X(i)

2 · · · X(i)
T (i+1) ] with P (i) = diag(P (i)

1 , P (i)
2 , · · · , · · · P (i)

T (i+1) ).
For this illustrative example, four data-vectors are derived from the original data
after the four groups at the first step are evaluated. The next step is to describe the
stopping criterion.

The stopping criterion must evaluate the degree of information loss while quanti-
fying the information provided by any dimension in the data. Since variance is con-
sidered as the measure of information, the quantification is provided by the singular-
values. Specifically, an average of all the singular-values in a group quantifies the
information retained in a group. Consequentially, one can compare this average value
to α/100 and halt the dimension reduction methodology, if the average is equal to
or smaller than α/100. The scenario implies that the cumulative average of all the
dimensions in each group is exactly equal to α/100 and any reduction in dimensions
is going to make the average less than α/100. The end result provides the informa-
tion that the process of dimension reduction is optimal and the dimensions cannot
be reduced further without additional information loss.

For our example, lets assume that the stopping criterion is not satisfied and re-
initiate the process of grouping. Furthermore, it is assumed that the transformation
stage ended with four dimensions in the data for our example.
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3.3 Stage-1: Groupings at the Later Steps that is i > 1

Since, four dimensions are obtained at the end of the previous transformation step,
these dimensionsmust be grouped into two groups and the strength of their respective
singular-values can now be used to group these dimensions. However, these group-
ings must be performed in such a way that dimensions with larger singular-values
are not grouped together. This way it can be ensured that the dimensions that imply
large variances are not present in the same group and are not prematurely discarded.

With our example, let’s say that the first two attribute contribute more to variance
relative to the others. Therefore, one and two must be placed in separate groups
which would mitigate the chance of premature loss of these attributes. With this
line of thought, the first and the third attribute form the first group and the rest two
attributes form the second group. In a general case, this can be accomplished by
ordering the dimensions according to singular-values then grouping the first and the
last dimensions together.

One can observe that the grouping mechanism is nothing but a shuffling mecha-
nism and can be represented in matrix form. Let this matrix be defined as Q(i) then
the transformation between two successive steps can be rewritten as

X (i+1) = Q(i)X (i)P (i).

Once the shuffling process is performed, one step of the dimension reduction process
is finished, that is a grouping and a transformation stage. These stages are continued
for I steps and a generalized expression for this transformation can be written as

X (I ) = Q(I ) · · · Q(1)X (1)P (1) · · · P (I ) = QX (1)P, (13)

where Q = Q(I ) · · · Q(1) and P = P (1) · · · P (I ). Denoting this transformation as F,

one can rewrite Eq. (13) as

X (I ) = F(X (1); Q, P). (14)

where F(.; Q, P) is the dimension reducing transformation as illustrated in Fig. 3.

Remark 3 Through the use of NDR, efficient dimension reduction in large dimen-
sional cases can be ensured. This is due to the fact that the problemof singular random
matrices can be avoided through the use of the group-wise reduction strategy and by
choosing the group sizes.

With our example, one may achieved a total of two dimensions as a result of
two transformation steps with I = 2 which implies that there are only two useful
dimensions in our example. By removing all the other dimensions from the data, the
problem of unwanted dimensions is handled but the issue of heterogeneity remains
which is described next.
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4 Classification

For illustration in this section, the batch of data that has been reduced into two
dimensions is utilized, that is X 1. Since, the complete picture of the underlying
problem is not represented by the samples at hand, it is obvious that the learning
model can encounter characteristics not described by the training data. Due to these
unseen characteristics, errors may appear that can be quantified as generalization
error Jgen.

However, these characteristics are unknown and the resulting error cannot be
predicted beforehand. Therefore, an approximation of this error must be derived and
unseen samples must be generated for this purpose. To achieve this approximation,
let every data-point be the center of a neighborhood such that it is reasonable to
assume that the data-points in the neighborhood belong to the same category as the
center point.Next, generate samples from the neighborhood such that these additional
samples can be seen as unseen samples providing an approximation of generalization
error egen and its associated cost Jgen.

Formally, let �x ∼ p′(μ,S) represent the perturbations introduced into every
data-point x to generate the neighborhood. Let p′(.) denote a probability distribu-
tion that can be fully described by the first two moments: mean μ and covariance
S. Perturb every data-point x ∈ X 1 to get x + �x with ‖�x‖ ≤ Q. A collection
of all of these perturbed data-points denoted by x + �x represents the neighborhood
for x. It follows thatX B = {xB |xB = x + �x,∀‖�x‖ ≤ Q,∀x ∈ X 1}.Anapprox-
imation of generalization error can be obtained from the neighborhood that can be
written as E[egen] = E∀xB∈X 1B , y∈Y1[ y − ŷ].

In other words, for our example, an additional batch of data is generated in the
two dimensions by perturbing the original data-batchX 1. Let the collection of these
two data-batches be denoted as X 1B . An histogram of X 1B for our example case
is illustrated in Fig. 2a. It is observed that X 1B represents � better than X 1. This
indicates that the impact of heterogeneity is compensated through the use of the
additional samples.

Once this is done, the cost of generalization is incorporated into the learning
problem to improve the resilience of the classifier. To this end, define E[egen]T E[egen]
as Ĵgen and substitute into Eq. (6) to reveal

J (θ̂) = 1

2
[Jemp + Ĵgen]+ Japx ,

J (θ̂) = 1

2

[
E[el] E[egen]

]T [
E[el] E[egen]

]+ Japx ,
(15)

where the learning error is denoted as el and the approximated generalization error is
denoted as egen. For brevity of notation, the expectation operators are not explicitly
stated from hereon. By minimizing the new cost function, it is possible to minimize
the empirical cost alongwith the approximated generalization cost. Thus, the learning
problem is given as
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θ∗ =argmin
θ̂∈�

J (θ̂), (16)

with � representing the parameter space.

Remark 4 Depending on the amount of perturbations that are introduced into the
data, the neighborhood represents the entire input space. However if �x is large,
outliers are included in the neighborhood. On the other hand, small perturbations
lead to large generalization errors.

Next, to optimize the cost function, an update law is defined as

Ŵ
(i)
k+1 = Ŵ

(i)
k − αu(i)

k , (17)

with α > 0 being the learning rate. Let weight decay be introduced as a constraint
into the problem and write the Lagrangian as

H( ŷ, x; θ) = 1

2

[
J (θ) + λ

d∑

i=1

‖W (i)
k ‖2], (18)

with λ > 0 being the decay coefficient. The learning problem in Eq. (16) can be
rewritten as

θ∗ = arg min
θ̂

H( ŷ, x; θ). (19)

When learning is performed using gradient descent, the weight update for each layer
at iteration k is given as

u(i)
k = ∇

Ŵ
(i)
k
H( ŷ, x; θ),

where ∇() represents the derivative. Finally, the updates for the weights are
achieved as

u(i)
k = δ(i)

k + λŴ
(i)
k

and the term δ(i)
k is given as

δ(i)
k = ∇

Ŵ
(i)
t
J = G(i)(x) + G(i)(x + �x), (20)

with G(i)(x) = ∇
Ŵ

(i)
t
Jemp being the derivative of the empirical cost and G(i)(x +

�x) = ∇
Ŵ

(i)
t
Ĵgen being the derivative of the generalization cost. Note that both the

original data and the additional samples contribute to the learning signal. Simplifying
through chain rule reveals

G(i)(x) = − f (i−1)(x)eTl

[ i+1∏

j=d

diag(∇ f ( j)(x))Ŵ
( j)

]

diag(∇ f (i)(x)), (21)
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Let T (i)(x) = ∏i+1
j=d diag(∇ f ( j)(x))Ŵ

( j)
and simplify Eq. (20) to get

δ(i)
k = −[ f (i−1)(x)

︸ ︷︷ ︸
η(i−1)×1

f (i−1)(x + �x)
︸ ︷︷ ︸

η(i−1)×1

]εTT (i)

⎡

⎢
⎢
⎢
⎣

(diag(∇ f (i)(x))
︸ ︷︷ ︸

η(i)×η(i)

diag(∇ f (i)(x + �x))
︸ ︷︷ ︸

η(i)×η(i)

⎤

⎥
⎥
⎥
⎦

, (22)

where the overall error can be given as

εT = diag(
d J (θ)

d ŷ
)T = diag( el︸︷︷︸

F×1

, egen
︸︷︷︸
F×1

). (23)

It follows that
T (i) = diag(T (i)(x)

︸ ︷︷ ︸
F×ζ(i)

,T (i)(x + �x)
︸ ︷︷ ︸

F×ζ(i)

),
(24)

with ζ(i) representing the number of neurons in the hidden layer (i).
As observed above, ε is normalized by a transformation T (i) to impact learning

with the traditional gradient descent. In other words, the linear approximations of the
cost function that is T (i)(x) and T (i)(x + �x)) determine the learning directions
and the magnitude of learning for the DNN. Furthermore, it can be observed that
the directions of learning are influenced by the singular vectors of T (i) and singular
values of T (i) describe the learning magnitude. Since, each diagonal element in T (i)

is the products of the layer-wise activation function derivatives, it can be seen that
‖T (i)‖ ≥ σmin(T (i)),whereσmin(T (1)) is the smallest singular value. If ‖T (1)‖ ⇒ 0
then it is also true that σmin(T (i)) ⇒ 0, which one may get by applying squeeze
theorem [36]. In simpler terms, with an increase in the number of layers in the DNN,
the singular values of T (i) would diminish, which is also known as the vanishing
gradients issue [36]. As a solution to the issue, one can utilize the error directly for
learning the weights at every layer and this method is referred to as error-driven
learning (EDL).

To enable such a learning state, a performance measure H (i)( ŷ, x; Ŵ (i)
) is

described for each layer in the DNN and H (i)( ŷ, x; Ŵ (i)
) is optimized. Specifi-

cally, the layer-wise cost is defined in such a way that minimizing H (i)( ŷ, x; Ŵ (i)
)

minimizes the overall cost. It follows that

H (i)(Ŵ
(i)

) = 1

2

[
tr((Ŵ

(i)
k )Tδ(i)

k ) + λ‖W (i)
k ‖], (25)

where tr(.) is the trace operator. Observe that the cost function is defined in a such a
way that δ(i)

k can be understood as a feedback of the cost function on layer i. It follows
that by minimizing the cost-function, one would minimize the feedback which is
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basically the error. It can therefore be understood that each layer is independently
contributing towards minimizing the error.

To define δ(i)
k , at each layer with the new setup, T (i) is replaced by B(i) =

diag(B(i)(x)
︸ ︷︷ ︸
F×η(i)

, B(i)(x + �x)
︸ ︷︷ ︸

F×η(i)

), where B(i) is defined to satisfy positive definiteness

of B(i)(B(i))T . Then δ(i)
k is given as

δ(i)
k = [ f (i−1)(x)

︸ ︷︷ ︸
η(i−1)×1

f (i−1)(x + �x)
︸ ︷︷ ︸

η(i−1)×1

]εT B(i).
(26)

The overall cost can therefore be written as

H( ŷ, x; θ) =
d∑

i=1

H (i)(Ŵ
(i)

) (27)

The updates for the weights are then given as

u(i)
k = ∇

Ŵ
(i)
k
H( ŷ, x; θ). (28)

The success of the above described learning regime depends on the careful choice
of B(i) which is described next.

Choice of B(i): Oneway to choose B(i) is to sample at random from a pre-selected
distribution. The main advantage of this is that it will enforce learning progression in
random directions thus improving the exploration of the methodology [35]. On the
other hand, thiswill provide the learning problemwith no real navigation capabilities.
Another way to choose is to ensure that the DNN learns in directions of steepest
descent for J (θ). The construction of B(i) decides the learning directions. Therefore,
one can construct B(i) in such a way that the learning is guided towards the minimum
of the cost function. To do this, one may use the learning directions that are dictated
by the singular vectors of T (i). With the size of the output vector in the DNN being
F and the total number of hidden layers being denoted as η(i), one can observe that

T (i) ∈ R
F+η(i)×F+η(i)

. Finally, one may write B(i) = ∑F+η(i)

j=1 κ(i)
j ν(i)

j (ν(i)
j )T , where

singular vectors are denoted byν j and the singular values are denoted byκ j > 0.The
weight update rules for both gradient descent and EDL are summarized in Table 2.

With our example, the DNN parameters and the parameters of NDR have been
updated for the first batch of data. From the overall approach described in Fig. 4, it can

Table 2 Summary of the batch-wise update laws with Ŵ
(i)
k+1 = Ŵ

(i)
k − αu(i)

k

(W (i))

Gradient descent u(i)
k = E[δ(i)

k ] + λW (1)
k , where δ(i)

k is defined in Eq. (20)

EDL u(i)
k = E[δ(i)

k ] + λ1E[∇W (i) Ĥ (i)] + λ2W
(i)
k , where δ

(i)
k is defined

in Eq. (26)
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Fig. 4 Proposed two-step classification framework

be observed that the parameters ofNDRandupdate for theDNNweights is performed
for each batch of the data. Thus, there is a need to aggregate the information from
different batches of the data otherwise the issue of heterogeneitywill arise. Therefore,
a process to aggregate the information across batches for both the DNN and NDR is
described next.

5 Two-Step Classification Framework

A flow chart of the two-step classification framework is provided in Fig. 4. As illus-
trated in the figure, each batch of data is first transformed using NDR. Next, the
transformed data is used to calculate cost function and the corresponding error sig-
nal is directly used for learning each layer in the DNN. The process is repeated for
each batch in the data for several iterations. However, for the dimension reducing
transformation, onewould have to recalculate the parameters for each batch. To avoid
this issue, batch-wise updates of the dimension reducing are introduced.

Batch-wise updates for the DNN weights are trivial because these have been well
studied in the literature [29]. However, to aggregate the information across multiple
batches for the dimension reduction approach, novel procedures need to be derived
and these are described in [37]. The batch updates described in [37] follow the idea of
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updating an old estimate till now using the information from a combination between
the new estimate and the old one. Following the notation from [37], one can write
the batch wise update as

C(q) = C(q−1) + 2Ĉ
(q−1)×(q) + Ĉ

(q),(q)
, (29)

with an aggregated estimate of distance covariance denoted as C(q) where all the

batches till batch bq−1 is included. Let Ĉ
(q−1)×(q)

be an estimate from the data (that

is batch bq ), along with the previously evaluated estimate. Furthermore, Ĉ
(q),(q)

provides the estimate from the current batch bq . Similarly, the SVD updates can be
also written as

U (q) = [U (q−1) I ]Û (q)
, V (q) = [V (q−1) I ]V̂ (q)

, �(q) = �̂
(q)

, (30)

where Û
(q)

�̂
(q)

(V̂
(q)

)T = SV D(K ) and K =
[

�̂
(q)

�̂
(q)

(V̂
(q−1)

)T J (q)

0 R(q)

J

]

. Next,

Û
(q)

, �̂
(q)

and V̂
(q)

are decomposition from K (q) with J (q) = 2Ĉ
(q−1),(q) + Ĉ

(q),(q)

and R(q)

J = (J (q) − V̂
(q−1)

(V̂
(q−1)

)T J (q)). It could be seen that the middle term in
the batch-wise updates requires that a representative batch sample for all the data till
now be kept. Theoretically, it can be shown that if an infinite number of data-points
are available then the estimated DC and its SVD will converge to the true values
(see Theorem 1 in [37]). Since, this is not possible in practical cases, a finite history
generated using popular sampling techniques would suffice.

The efficiency of the two step approach is presented next.

Algorithm 1 Low-rank approximation for SVD, j represents the dimension in the
matrix, d represents the singular value

1: Inputs: matrix K , κ = κ
(i)
t ; ∀t, i .

2: Outputs: U,�, V .
3: Let C1 = C .
4: Let κ1 = 0.
5: for j ∈ 1, 2, ...,κ.
6: for Iterate until convergence, ∀k.
7: uk ← (K T K )ku0

‖(K T K )ku0‖
8: uk ← (K T K )kv0

‖(K T K )kv0‖ .
9: end for
10: d j ← uTj C jv j

11: C j = C j−1 − d juTj v j .
12: end for
13: Final SVD, U = {u j }, V = {v j },� = diag({d j }),∀ j = 1, 2, · · · ,κ.
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6 Results and Discussion

The two step classification framework is employed to analyze a total of ten data-sets
in this section and the details of the data-set are described in Table3. The split for the
training and test data-set is done at random. Twenty percent of the data-set is used
for test and the rest eighty percent is used for training. The results are summarized
using mean and variance. The software package Tensor-flow with Python is used for
all of the experiments in this paper. The advantages of the NDR in big-data situations
is demonstrated first.

Algorithm 2 A Nonlinear dimension-reduction (NDR)
1: Input: X , α
2: Output:Reduced dimension X
3:
4: for Each batch in X
5: X(1) = batch
6: Standardize X(1).
7: for step from i = 1 → I

8: if 1
T (i)

∑T (i)

t=0
∑κ

l=0 λl ≥ α
9: Stop the dimension-reduction procedure
10: end if
11: if i>1
12: Create groups
13: else
14: Generate groupings at random
15: end if
16: for Every group at step i
17: Calculate Distance Correlation matrix
18: if batch number is one
19: Use current Distance Correlation
20: Evaluate κ
21: else
22: Use the aggregated Distance Correlation
23: Evaluate κ
24: end if
25: Evaluate low rank approximation using Alg. 1
26: Update distance covariance using Eq (29)
27: Update low rank SVD using Eq (30).
28: end for
29: end for
30: Train the regression parameter using Alg. 2
31: end for
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Table 3 The statistics of different data-sets used in the paper

Data-set Dimensions Data points Classes

Rolling [43] 11 35000 4

Sensorless [31] 48 78000 11

MNIST [28] 784 72000 10

NotMNIST [5] 784 81000 10

CiFAR-10 [26] 3072 50000 10

Gisette [18] 5000 6000 2

Madelon [18] 500 1000 2

Arcene [18] 10000 100 2

Dexter [18] 20000 300 2

Image-Net [40] 784 12614060 10

Synthetic data-set 20000 2000000 10

6.1 Mitigating Noisy Dimension

The hyper parameters for various methodologies are described in Table4 with the
results for sensorless drive-diagnostics data-set tabulated in Table5. The results are
seen to be optimal with Type-1 error rate increasing with an increase in the number
of dimensions extracted from the data. The best accuracy is observed when the
dimensions are reduced to 35. Next, the results for NDR are compared with other
approaches and the results are summarized in Table9.

Better performance is observed for NDR relative to other approaches. As, sensor-
less drive data-set typically consists of nonlinear relationships, PCA will fail, which
is observed in the results. In these tests, the data is reduced to 25 and improvement is

Table 4 Hyper-parameters for different methodologies in this paper

Method Hyper-parameters

K Nearest Neighbors (KNN) Three neighbors

Support Vector Machine (SVM) C = 0.025

Kernel SVM RBF kernel, gamma = 2, C = 1

Decision Trees (DT) Max depth = 5

Random Forest (RF) Max depth = 5 estimators = 10, max attributes = 1

Shallow Neural Network (SNN) Lr = 0.01, 1 hidden layer, 500 neurons

AdaBoost Number of estimators = 50, learning rate = 1.0

Naive-Bayes No priors

Quadratic Discriminant Analysis (QDA) No priors

Logistic Regression (LR) Random initialization, learning rate = 0.001, 1000
iterations
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Table 5 Accuracies at various dimensions alongwith false positive rates for rolling element bearing
data-set

α/100 Dimensions False positive rates Accuracy

0.50 5 0.008 0.93

0.60 6 0.009 0.94

0.70 7 0.011 0. 96

0.95 10 0.011 0.98

0.99 11 0.011 0.95

Table 6 Average accuracies for the toy data-set over 100 runs

Methodology With neighborhood Without neighborhood

Half-Moons 93 84

Concentric circles 95 91

observed in large dimensional cases.Next, the results on the problemof heterogeneity
are illustrated.

6.2 Mitigating Heterogeneity

To generate the neighborhood, Gaussian-distributed and uniformly-distributed per-
turbations are used where the mean vector is chosen as a zero and ρI denotes the
variance-covariance matrix. Let I represent an appropriate identity matrix whereas
for the uniformly distributed perturbation choose [−ρ, ρ] as parameters. The quantity
ρ controls the magnitude of the variance and denotes the size of the neighborhood
and one can enforce neighborhood size using �x = �x

‖�x‖ρ with ρ chosen by the
practitioner.

First, the results for EDLare presentedwith B(i) being chosen through the singular
vectors of T (i). The hyper-parameters for the proposed framework are summarized
in Table10, where hln is the number of hidden layer neurons; nneigh denotes the
number of neighborhood points.

The intensity of noise in the data is increased and the change in accuracy is
demonstrated in Fig. 6b. The size of the neighborhood is kept as one and the average
accuracies and generalization error over one hundred initial conditions of weights
are plotted in Fig. 6b. The deterioration in performance with the proposed framework
is smaller relative to the case without the perturbations. Therefore, an improvement
in the resilience of DNN’s is observed.

Using toy data-sets such as concentric circles and half moons data-set, one can
observe the ability of the neighborhood principle to improve generalization and
increase the resilience of neural networks. In Fig. 5a, one may observe that the data-
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(a) (b)

Fig. 5 a Decision Function for half moons data-set (top right) and concentric circles data-set
(bottom right) without neighborhood. b Decision function for half moons data-set (top right) and
concentric circles data-set (bottom right) with neighborhood
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Fig. 6 Accuracy versus the increase in the intensity of noise in the data
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Table 7 Model parameters

Architecture Parameters

CNN nconv = 2, nlayers = 2,
filter size = 5, pool shape = (3,3),
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

MLNN d = 7, hln = 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

SAE nunits = 3,
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

DAE nunits = 3,
hln= 128, α = 0.01, b = 100, λ = 0.001
nneigh = 2, ρ = 1

points closer to the decision boundary get misclassified in the absence of neighbor-
hood. This may be observed from Table6, the increase in accuracy with or without
the neighborhood is shown for these data-sets.

It was also observed during our study that increasing the neighborhood size lets
the perturbations overwhelm the signal. In other words, different categories in the
data became indistinguishable and the performance of the proposed framework dete-
riorates significantly. As described by the plots in Fig. 5a, it is seen that when a
data-point crosses the decision boundary due to the perturbations, it violates the pri-
mary assumption that the data-points in the neighborhood should belong to the same
category as the original data and therefore errors are observed.

Next, convolutional neural networks (CNN) [27] and multilayer neural networks
(MLNN) are tested using the proposed framework where the hyper-parameters are
illustrated in Table7. It is consistently observed across the board that there is an
improvement in performance when perturbations are introduced to construct the
neighborhood.

Next, sparse auto-encoders [48] and denoising auto-encoders [52] are used for
analysis and one may refer to Table7 for hyper-parameters. From Fig. 6c, one may
observe an improvement in accuracy for the proposed framework over SAE’s.

In summary, with the proposed approach, the resilience of DNN in the presence
of heterogeneity and noise is improved. THe results are consistent across different
architectures. The final results of the overall approach are described as follows.

6.3 Classification

The learning rates are chosen as 0.001 and the results are tabulated in Table8. The
resulting accuracy with dimension reduction is compared to the case without the
dimension reduction process. With an increase in the number of dimensions in the
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Table 8 Accuracies for different data-sets with and without the dimension-reduction

Data-set With dimension-reduction Without dimension-reduction

Arcene 0.86 0.73

Dexter 0.99 0.69

Gisette 0.99 0.71

Madelon 0.85 0.79

MNIST 0.94 0.89

Table 9 Accuracies for Sensorless Drive Diagnostics data set with comparison to different
dimension-reduction approaches

Dim-Red ↓ KNN SVM LDA DT RF SNN AdaBoost Naive-
Bayes

QDA

PCA 0.52 0.52 0.523 0.4538 0.4529 0.5254 0.1844 0.45670 0.5377

ISOMAP 0.6752 0.4691 0.4302 0.3255 0.3975 0.5847 0.1844 0.4256 0.4925

LLE 0.2574 0.0876 0.1540 0.1886 0.1889 0.0876 0.1858 0.1911 0.1931

KPCA 0.54 0.53 0.523 0.4538 0.4488 0.5827 0.280 0.45670 0.5377

Lasso 0.2574 0.0876 0.1540 0.1886 0.1889 0.0876 0.1858 0.1911 0.1931

Elastic Net 0.54 0.53 0.523 0.4538 0.4488 0.5827 0.280 0.45670 0.5377

Proposed 0.89 0.91 0.84 0.70 0.65 0.93 0.25 0.73 0.86

data, the difference in accuracy increases and the case with dimension reduction
provides better results that the alternative case. Furthermore, the proposed method-
ology is optimal even when the total number of data-points are less than the total
number of dimensions. This is observed as the results on Arcene, Gisette and Dexter
data-set show considerable improvement. The proposed methodology can be com-
pared for accuracies with the most traditional classification methods and the results
as described in Table9. It is again seen that the proposed methodology performs
optimally for data-sets such as Arcene, Gisette and Dexter data-set (Table9).

Next, the performance of the proposed method is tested on classification. A total
of four learning paradigm that include DFA (Direct Feedback Alignment) [35], SGD
(Stochastic Gradient Descent) [19], FA (Feedback Alignment) [32] and EDL (Error-
driven Learning), are tested. The hyper-parameters for different models are given
in Table10 that includes all the data-sets. Proposed framework appears to improve
performance across the data-sets and reasonable accuracies are observed for the large
dimensional data-sets.

Generalization capability of the proposed framework is described for different
data-sets in Table10. Lowest generalization error is observed for EDL and one can
observe improved generalization errors in the presence of heterogeneity and noise.
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7 Conclusions and Future Work

A systematic approach was presented to design a classifier in the presence of chal-
lenges such as heterogeneity, vanishing gradients and noise. Since synthetic dis-
tortions are introduced to approximate the generalization error, our framework is
robust in the presence of data-noise because less variation in accuracy is observed.
Careful selection of the magnitude of the perturbation is necessary because large
perturbations deteriorate the performance of the proposed framework significantly.

The direct use of the overall error signal in the learning process appears tomitigate
the vanishing gradient issue even when sigmoid and tanh activation functions were
used. The proposed framework combined with EDL appears to outperform other
approaches such as DFA and FA in all of the data-sets under analysis. Moreover,
unwanted dimensions appear to impact accuracy less with the use of the dimension
reduction approach.

NDR achieves very good accuracies in the presence of large dimensional data-
sets. By controlling information loss, NDR can determine the cardinality of the
low-dimensional space. As a result, the presence of unwanted dimensions can be
effectively addressed within NDR.

One of the primary drawback of the two step approach is that the NDR does not
get any feedback from the classification. This could be addressed through a compre-
hensive approach where the parameters of NDR are updated using the classification
error. Investigating this issue could be part of future work.
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Deep Learning for Soft Sensor Design

Salvatore Graziani and Maria Gabriella Xibilia

Abstract Soft Sensors are mathematical models used to predict the behavior of real
systems. They are usefully applied to estimate hard-to-measure quantities in the pro-
cess industry. Many Soft Sensors are designed by using data-driven approaches and
exploiting historical databases. Machine learning is widely used for this aim. Here,
the potentialities of deep learning in solving some challenges raising in industrial
applications are introduced. More specifically, the paper focuses on three specific
aspects: labelled data scarcity, computational complexity reduction, and unsuper-
vised feature exploitation. The state of the art of Soft Sensors based on deep learning
is described. Then, the focus is on Soft Sensors based on Deep Belief Networks, as a
research field that the authors have been investigating since years. The improvements
offered by Deep Belief Networks, over more conventional data-driven approaches,
in designing Soft Sensors for real-world applications will be shown. Soft Sensors for
specific cases study are described.

Keywords Soft sensors · System identification · Deep learning · Deep belief
networks · Semi-supervised learning · Industrial applications

1 Soft Sensors in the Process Industry

The implementation of Industry 4.0 enforces the need for processes monitoring.
Plant monitoring, control policies, and assets management impose the estimation of
plant working conditions. Efficient measurement and data elaboration systems are,
therefore, required. Ubiquitous sensing systems are required, with somewhat con-
trasting constraints on sensing capability, efficiency, redundancy, and costs. Physical
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or economic reasons, e.g., can limit the nature, number, and location of measuring
systems.

Models of real-world processes, devoted to the estimation of process variables
by exploiting their dependence on other variables, are known as Soft Sensors (SSs).
They are software tools that elaborate data on easy-to-measure process variables (SS
inputs) and estimate hard-to-measure quantities (SS outputs).

SSs are becoming a penetrating solution in the industry, capable of overcom-
ing physical limitations. They can face the problems mentioned above and are the
object of a vivid interest by several communities, including industries, because of
the following interesting properties:

• represent an alternative to hardware measuring devices;
• can be useful in measurement validation and fault detection;
• can be easily implemented, by using largely available and powerful hardware;
• allow for real-time estimation of variables, thus guaranteeing the possibility of
implementing feedback control strategies.

The using of SSs in industrial applications and, in particular, in the process indus-
try, has been widely addressed in the literature. The first contributions reviewing
industrial case studies can be found in [1, 2]. More recently, many other cases study
have been proposed in the literature. The discussion of all available literature is
beyond the scope of this chapter. The focus of this chapter is, on the contrary, on
specific issues arising in the SSs design and how they can be approached by deep
learning.

Due to the complex and nonlinear nature of industrial processes, the model design
is not a trivial issue and data-driven system identification procedures are widely
proposed in the literature, as the most suitable approaches [1, 2]. Data extracted
from a historical database, or purposefully collected during dedicated experimental
measurement surveys, are used to this aim. Data-driven SSs are generally based
on Principal Component Regression, Neural Networks (NNs), Fuzzy Logic, Kernel
Learning Methods, and Bayesian approaches, to mention a few [2, 3].

Notwithstanding the interest in SSs, unsolved problems have so far hindered
the full success of the data-driven designing approach. Recently, deep learning has
emerged as a valuable approach for alleviating some of such problems. One of the
main problems of NN based SSs is their inefficiency in representing very complex
nonlinear phenomena, on the basis of a limited set of available experimental data.
Though more complex representations can be obtained by using deeper structures,
it has been shown that these can not be successfully trained by conventional BP-
like algorithms, due to the vanishing and exploding gradient problems. The solution
was given by the seminal works by Hinton and coworkers [4–6], who introduced
a greedy layer-wise unsupervised pre-training and supervised fine-tuning, capable
of efficiently training deep structures. As a consequence, the popularity of deep
structures has continuously raised and now they represent the state of the art solutions
in applications fields such as image processing, speech recognition, natural language
processing, etc. [5]. A variety of deep structures have been proposed in the last years,
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including Stacked AutoEncoders (SAEs) [7], Deep Belief Networks (DBNs) [8], and
Convolutional Neural Networks (CNNs) [9, 10].

The complexity of the nonlinear model representation is not the one problem
in SS design that needs to be faced with. In a typical scenario of SS design for
the process industry, physical process variables are sampled at a much faster rate
than corresponding chemical quality variables. Process variables (flows, pressures,
temperature, etc.) are, in fact, measured online (typically at one sample per minute or
even at a faster rate), while quality variables are, generally, measured by laboratory
equipment, typically, once or twice a day. This aspect represents a relevant problem
when data-driven models need to be designed, based on available historical plant
databases. If traditional machine-learning methods are used in the design of SSs for
the process industry, only a very low fraction of available data (i.e., labelled data)
can be exploited. The use of semi-supervised learning approaches, typical of deep
learning, can give a meaningful solution to the described problem.

Deep structures also allow for approaching the issue of a large number of free
parameters, with respect to available experimental data, often encountered in data-
driven SSs, which poses the design at risk of overfitting. In fact, they allow for a
compact representation of complex problems. Finally, the unsupervised nonlinear
feature extraction process, which characterizes SAEs and DBNs training, can be
usefully adopted to gain insight on the process structure, better driving the SS design
process.

Many deep structures have been proposed for SS design, as it is described in
the next section. The remaining part of the chapter focuses on the potentialities and
challenges of DBNs in SSs design. Real-world industrial cases of study are described
with the aim of enlighten how DBNs can approach the problems mentioned above.
In details, the chapter is organized in such a way to focus on three different aspects
of SS design with DBNs: model complexity reduction, exploitation of unlabelled
data to improve the SS performance, and elaboration of dataset features for model
structure selection.

2 State of the Art of SSs Based on Deep Learning

In the following, the state of the art of the use of deep networks in SS design is
reported. The referred papers are organized based on the adopted deep network
structure. The first network topology considered is the SAE. An SAE is a NN,
consisting of a stack of autoencoders. Each autoencoder is a one hidden layer NN.
The training of each autoencoder is performed by setting the output equal to the input.
The autoencoder is required to accurately reconstruct its input, eventually removing
noise from the data and/or mapping data into a lower dimensional manifold. An
SAE is trained by performing a layer-wise unsupervised pre-training, followed by
a supervised fine-tuning. During the pre-training step, each autoencoder maps its
input data into the hidden feature layer. The gradient descent minimization of the
reconstruction error is used to determine the weights. After an autoencoder is trained,
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the output layer is removed and its hidden layer output is used as the input of the next
autoencoder. The training procedure is repeated for all layers in the stack. When the
unsupervised pre-training is completed, a further layer is added to the top of the stack
and a supervised fine tuning is performed, by using a gradient descent algorithm, to
finally determine the weights of the network.

The papers reported in the following, propose the use of SAEs to approach
relevant open problems in SS design. Process industries historical databases are,
in fact, usually data-rich but information-poor, containing mutually correlated and
highly redundant variables. A wide number of methods is used, during SS design, to
extract relevant information, through feature extraction procedures. Common strate-
gies are based on cross-correlation analysis, Principal Component Analysis (PCA),
Partial Least Squares Regression (PLS) and its non-linear counterpart nonlinear PLS
(NLPLS),Mallow’s Cp coefficient, Lipschitz’s quotient, Mutual Information (MI) or
Partial Mutual Information (PMI), Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm, and many other methods [2, 11]. In the last years, deep NNs
have been proposed in the literature to this aim, due to their ability to learn hierar-
chical abstract feature representation from data. However, traditional deep learning
algorithms feature extraction is unsupervised, i.e., the learning algorithms are not
designed to extract high-level output-related features. This problem is addressed in
[12], where a new variable-wise weighted SAE is proposed. Relevant input vari-
ables are chosen by using the correlation between the input of each autoencoder and
the output. In the proposed method, a deep autoencoder is pre-trained, a layer at a
time. The output information is incorporated by using different weights for different
variables in the objective function of the autoencoder. Weights are determined by
using the correlation analysis described above. A supervised final fine-tuning is then
performed. An SS for a debutanizer distillation column is reported as a case study.

Further results are reported in [13], where a nonlinear variable-wise weighted
SAE is proposed to learn quality-related features. The nonlinear Kendall correla-
tions of input or feature variables with the quality variable in each autoencoder are
used to obtain a corresponding weighted reconstruction objective function, which
is designed to learn quality-related features, layer by layer. The same case study of
[12] is considered. A hybrid variable selection method is proposed in [14], again
based on SAEs. In this case, at each iteration, the ranking of the input variables is
performed, taking into account the mutual information between the input variables
and the prediction error. Less relevant variables are removed and the weights of the
first layer of the networks are updated. Two applications are reported in the paper:
the estimation of the concentration of carbonmonoxide and ethylene in a gas mixture
and the estimation of the rotor deformation of the air preheater in a thermal power
plant boiler. SAEs are, also, proposed in [15] for the operation optimization of a coke
dry quenching process and in [16] to estimate the oxygen content in flue gasses in
a 1000 MW ultra-supercritical unit of a coal-fired thermal power plant. A new SS
modelling method, which integrates autoencoders and supports vector regression,
is proposed in [17]. In the paper, an autoencoder is used for determining a robust
high-level feature representation of the data. The support vector regression model is
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used for the output estimation, on the basis of the obtained features. The described
method is used for solving the problem described in [16].

The second class of deep learning SS design methodologies is based on the use of
DBNs. This structure, built as a stack of Restricted Boltzmann Machines (RBMs),
is widely described in the next section, along with its learning algorithm. Here,
some relevant applications are briefly described. The paper [18], appeared in 2014,
represents, as for the author knowledge, the first use of deep learning in the SS design
field. In the paper, a DBN is used to design an SS, which estimates the heavy diesel
95% cut point of a crude distillation unit. The advantages introduced by the use of
a deep learning strategy are widely discussed in the paper, as regards the improved
representation ability, the possibility of extracting nonlinear latent variables, and
of using unlabelled data, offered by the semi-supervised training phase. Also, the
efficiency in dealing with massive data is outlined. In [19], authors use a DBN
for predicting the oxygen content of a combustion process. The SS uses color flame
images, captured by a camera. The DBN extracts nonlinear features from the images,
obtaining a better description of the combustion process. A supervised fine-tuning
stage is then used for obtaining the relationship between the images and the oxygen
content. Two DBN-based regression models are proposed in the paper. The first
is the traditional NN trained by back-propagation, the other is the support vector
regression. The method is tested in a real combustion system. Other applications of
the DBN structure to SS design can be found in [20–22]. These applications will be
discussed in more details in the following to outline the potentialities of DBN in SS
design through suitable real-world case studies.

CNNs have also been recently used for SS design. In [23] a CNN has been pro-
posed to predict the gas phase composition of a pyrolysis reactor, by using a moving
window approach. The paper [24] proposes an SS for health monitoring and struc-
tural damages detections in spacecraft, through the estimation of vibration responses
from partial vibration measurements, using a CNN.

Randomization methods have also been extended to deep networks and used
to approach SSs design. In this class of learning methods, the hidden weights are
randomly chosen. Either the pseudoinverse or the least square method is applied for
computing the weights of the last layer. In [25], the authors use both deep networks
and the randomized algorithm for nonlinear system identification. The SS has a
deep structure, where increased hidden layers and decreased hidden neurons, concur
at improving the modeling capacity. The RBM learning algorithm is used to train
the hidden weights and the randomized algorithm is used for computing the output
weights. A semi-supervised deep learning model for SS development, based on deep
Extreme Learning Machines (ELM), is also proposed in [26]. It can use both labeled
and unlabelled data, improving the prediction performance and robustness of SSs.

An ensemble deep kernel model is used in [27] for an industrial polymerization
process. Ensemble Learning methods are usually composed of two steps, the ensem-
ble members generation, in which some predictive models are generated, and the
prediction combination. Both stages can be implemented with a wide number of
strategies. In the paper, the unsupervised learning stage of a DBN is used for features
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extraction. A kernel learning regression model is then used for estimation the nonlin-
ear relationship linking the features to the output. A bagging-based ensemble strategy
is adopted along with the deep kernel learning method. The reliability of the predic-
tion model is, therefore, improved. A different semi-supervised ensemble method,
based on a distance-to-model criterion and local models, is described in [28]. The
procedure starts with an adaptive state partition approach, which uses unlabelled
samples. Then, a distance-to-model criterion is introduced for selective ensemble
learning. The proposed strategy allows for overcoming drawbacks of the k-nearest
neighbour method. The metric allows for describing the relationships between query
samples and local models more accurately. A particle swarm optimization is per-
formed to compute the required parameters. A debutanizer distillation column and a
sulphur recovery unit are used as benchmarks.

Genetic algorithms are used in [29] to determine the optimal structure of a deep
sparse autoencoder. The prediction error is used as the fitness function. An SS for a
biological wastewater treatment plant is used as a benchmark.

A deep probabilistic sequential network for SS design is proposed in [30]. The
model combines unsupervised feature extraction and supervised dynamicmodelling.
The proposed method is based on the Gaussian–Bernoulli RBM and a Recurrent
Neural Network (RNN). It is applied to the design of an SS for a CO2 absorption
column.

The state of the art described in this section, clearly shows a vivid interest in deep
structures by the SS community. In addition, many different structures have been
proposed, because of the needing of adapting deep learning to the specific application
field. Among deep structures, in the following, the focus will be restricted to DBNs,
as a deep structure capable to cope with three challenges, relevant in the data-driven
soft sensor design, as it will be discussed in details in next sections.

3 SSs Design

SSs can be designed by eithermechanisticmodelling (physicalmodelling),multivari-
ate statistics, ormachine learningmethods. In the industrial environment, data-driven
models are widely adopted, both because the complexity of involved phenomena hin-
ders the use of physical models and because of the availability of historical datasets.
Data-driven model design involves four main steps:

a. experimental data acquisition/selection;
b. model class selection;
c. model identification;
d. validation.

Each of the steps mentioned above poses specific challenges, which are, currently,
the object of research activities. A short discussion of the problems arising for each
step is given in the following. As it concern the item a., two classes of problems can
be listed. The first one deals with the quality of available data. In fact, experimental
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data are generally available in the process industry databases. Unfortunately, their
quality is generally not well suited to SSs design, due to noise, collinearity, outliers,
and heterogeneity. Suitable strategies for data pre-filtering and outliers removal are,
therefore, required [2]. A specific issue raising in the process industry, relates to
the scarcity of labelled data, as it will be discussed in Sect. 5. The second aspect
concerns the selection of input variables relevant to the output estimation. When
linear processes/models are of interest, the correlation analysis is a suitable tool for
solving the problem. This is not the case when nonlinear processes are investigated.
In such a case, many selection methods have been proposed in the literature, with
somewhat contrasting pros and cons [11].

As it regards the item b., many choices are needed for selecting both the model
class, e.g., linear or nonlinear, static or dynamic, time variant or invariant, just to
mention the main ones. Nonlinear Autoregressive with Exogenous Inputs (NARX)
models are a quite general class of models, usually adopted in the field of SS design.

Multi-Input Single Output NARX models can be represented as:

ŷ(k) = f (y(k − 1),y(k − 2) . . . , y(k − n),

u(k − 1), u(k − 2), . . . , u(k − m) (1)

where k is an integer representing the discrete time, ŷ(k) is the estimation of the
k–th sample of the system output, u(k) is the vector of the input variables, f (•) is a
nonlinear continuous function, n is the number of output regressors (model order),
and m is the number of input regressors. If the output regressors are not used, a
Nonlinear Finite Impulse Response (NFIR) model is obtained. If the model does not
contain any past sample of inputs and outputs it is called a static nonlinear model.
NFIRmodels well fit SSs design since they do not require past measured values of the
system output, even though modelling the system dynamics. Static models, which
are the simplest possible nonlinear model structure, can be used when the system
dynamics is not relevant.

Finite time delay among inputs and outputs can characterize industrial processes.
It needs to be estimated by experimental data. Deep networks can help in determining
the value of finite time delay in SSs design [12–14, 41].

The item c, deals with the identification of the nonlinear function f (•). Statistical
or machine learning methods can be used to this aim [1, 2]. More recently, deep
learning has emerged as a valuable tool for identifying the function f (•), on the basis
of the available dataset. The focus of this chapter is on the application of DBNs as
an identification tool.

The item d. can be addressed using suitable indices and graphs. Among possible
indices, the Correlation Coefficient (CC), between the plant real process and the
corresponding estimation, and the Root Mean Square Error (RMSE) are widely
adopted in the literature. Further investigations deal with the statistical characteristics
of the model residual, which can be addressed by using either linear or nonlinear
approaches [2].
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4 Deep Belief Networks

Though many deep structures have been proposed in the literature according to the
problem of interest [5], this section will focus on DBNs, which will be used for the
cases of study reported in the chapter.

Due to the universal approximation capability of one-hidden-layer (shallow)
Multi-Layer Perceptrons (MLPs), they are commonly used in the SS design [1, 2].
The success of MLPs is due to the introduction of the back-propagation (BP) algo-
rithm and its successive improvements for MLPs training. The BP is a supervised
learning approach since it requires a suitable set of input-output pairs to be available
(labelled data). Unfortunately, shallow networks revealed to be inefficient in solving
complex problems [5] so that Deep Networks (DNs), i.e. networks with more than
one hidden layer, were proposed as a suitable alternative. BP is not an efficient train-
ing algorithm for DNs, because it is susceptible to get stuck on poorly behaving local
minima. Alternative learning approaches were, therefore, needed. This problem was
solved in 2006 by Hinton and his co-workers, who introduced an algorithm capable
of training DNs [4]. Many structures have been, since then, introduced to approach
different classes of problems. In the following, both the structure of a DBN and its
learning algorithm are described [31, 32]. A scheme of a DBN with 3 hidden layers
and one output neuron, as required for MISO models, is reported in Fig. 1.

ADBN is obtained by stacking LRestricted BoltzmannMachines (RBMs), which
represent the building blocks of the DN. Each RBMhas two layers. The lower visible
layer vl, (l= 1,…, L), representing the input, and the hidden layer hl, which produces
the latent variables. The RBM is an unsupervised model, obtained by its parent
network, i.e., the Boltzmann Machine, when connections between neurons in the
same layer, either the visible or the hidden layer, are not allowed. Only connections
between visible and hidden variables, therefore, exist.

In the stack, the output of each RBM is the visible layer to the next RBM.A greedy
layer-wise scheme, layer by layer, is adopted for implementing the unsupervised

Fig. 1 Scheme of a
three-hidden layer DBN
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training of the network. In the following, the training of a generic RBM in the stack
will be described. For the sake of simplicity, the subscript l will be omitted.

Unsupervised learning is performed one RBM at a time. Each RBM is trained by
maximizing the joint distribution P(v, h), between its visible and hidden variables.

Such a distribution is obtained by using the energy function:

P(v,h) = e(−Energy(v, h)

∑
v

∑
h e

(−Energy(v,h))
(2)

so that the goal of the RBM training is, also, the minimization of the energy function.
The denominator in (2) is a normalization factor, assuring that the summation of the
joint distribution, over all possible values of v and h, is one. The energy is defined
as:

Energy(v,h) = −bTv − cTh − hTWv (3)

if v and h are binary vectors (binary RBMs) or as:

Energy(v,h) =
∑

i

(vi − bi )
2

2σ 2
i

− cTv − hTWv (4)

for the case of continuous-inputRBM(GaussianRBMs). In (4) bi andσ i are themean
and standard deviation of the Gaussian distribution characterizing the i-th visible
input. Finally, if normalized inputs (i.e., zero mean and unity standard deviation) are
considered, (4) reduces to:

Energy(v, h) = 1

2
vTv − cTv − hTWv (5)

In (3), (4), and (5)W, b, and c are the parameters of the RBM. More specifically,
W is the weight matrix, b is the bias vector of the visible layer, and c is the bias vector
of the hidden layer. They need to be determined by a suitable learning algorithm.
To this aim, the gradient descent is applied to the log-likelihood at the point v as
follows:

∂ log
∑

h P(v,h)

∂θ
=

∑
h e

−Energy(v,h)
(

∂[−Energy(v,h)]
∂θ

)

∑
h e

−Energy(v,h)
−

∑
ṽ
∑

h e
−Energy(ṽ,h)

(
∂[−Energy(ṽ,h)]

∂θ

)

∑
v̂h e

−Energy(ṽ,h)

=
∑

h

P(h|v)
(

∂[−Energy(v,h)]

∂θ

)

−
∑

ṽ

P(ṽ,h)

(
∂
[−Energy(ṽ,h)

]

∂θ

)

(6)

where θ = {W, b, c} contains the weight and bias matrices of the RBM.
The first term in (6) is also called the positive term. It is the conditional expec-

tation of ∂[−Energy(v,h)]/∂θ . It is easily computed, given that the values of the
conditional probability
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P
(
h j = 1|v) = ec j+Wjv

1 + ec j+Wjv
= sigm

(
c j + Wjv

)
(7)

is known. In (7) sigm(.) is the usual sigmoidal function.
The second term in (6) is called the negative term. It is the expectation of

∂[−Energy(v,h)]/∂θ of the joint distribution P(v, h) and can become intractable
for RBMs with a large number of units. It is usually approximated by using the
Contrastive Divergence (CD) algorithm.

A two-stage Gibbs Sampler is used as an approximated sampling approach. A
one-step Markov chain is used, usually, to this aim:

1. Sample h1 from P(h|v = v0),
2. Sample v1 from P(v|h = h1).

By using the approximation reported above, θ , can be easily updated [18].
After the unsupervised training, the latent variables are obtained at the topmost

layer. They are further processed for estimating the DBN output. An output layer
is, added to this aim. The weights of this layer are randomly initialized. The whole
network is fine-tuned by using a BP-like training algorithm. The weights, obtained
during the unsupervised learning phase, are used as an initial value for θ . The fine-
tuning phase is the only one needing labelled data.

5 Real-World Cases Study

This section is intended to illustrate the potentialities of DBNs in SS design. Each
subsection in the following refers to a challenge relevant for the SS community
and describes the advantages offered by DBNs with respect to conventional NNs.
Moreover, in each subsection, a real case study is used to better outline the investi-
gated aspect. The reader interested in the cases study can find further details on the
referenced literature.

5.1 Semi-supervised Learning Based Soft Sensors

As mentioned in a previous section, the scarcity of labeled data characterizes many
applications and strongly limits the possibility of data-driven SS design. DBNs can
offer a valuable solution to such a drawback. In fact, conventional supervised learning
algorithms can use only labelled data, which are a little fraction of data generally
collected in industrial databases. As a consequence, the large amount of available
data can not be used for the SS design. The unsupervised learning phase of a DBN,
followed by a supervised fine-tuning, perfectly matches the typical scenario of an SS
design. It is usual, in fact, that physical process variables are sampled at a much faster
rate than the corresponding chemical quality variables. Process variables (flows,
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Fig. 2 Time distribution of
labeled and unlabeled data in
a typical database of a
process industry plant

pressures, temperature, etc.) are, in fact, measured online (one sample per minute
or even faster rates are used), while quality variables are sampled at a much lower
sampling rate. They are, generally, measured in the laboratory, typically, once or
twice a day.

A schematic of data distribution in time is reported in Fig. 2, blue-filled forms
refer to input (circles) and target (squares) for labelled data, while yellow forms
refer to unlabelled data. In the present case of study, labelled data correspond to
lab-measured data, while unlabelled data are acquired online.

Fast sampled data (unlabelled data) can be exploited during the unsupervised
training phase, while the few labelled data can be used during the supervised fine-
tuning. The unsupervised training phase allows for starting the supervised phase in a
better condition with respect to the randomly chosen classical BP initial conditions.
This will have a beneficial effect on the prediction performance of the network [5].

Here, the advantages of using a semi-supervised learning algorithm in the design
of SSs are illustrated through a real-world case of study [21]. The approach, described
in the following, has been introduced in [18], where the ASTM 95% cut point index
of an atmospheric distillation column has been modelled by a static model, based
on DBNs. To the best of authors’ knowledge, the case study described in [18] is the
first reported case of application of DBNs to SSs design, as a method for exploiting
unlabelled data.

In the following, the design of SSs for a Sour Water Stripping (SWS) plant of
a refinery is described. Two SSs are designed for estimating the concentrations of
hydrogen sulfide (H2S) and ammonia (NH3) in thewastewater of the SWSplant. SWS
plants are used for removing pollutants in the refinery wastewater. The processed
water can be either re-used by other refinery plants or released to the environment.
The concentrations of H2S and NH3 need to be, therefore, monitored. Refineries,
generally, use to this aim laboratory facilities.

A low number of samples are, therefore, available in the historical database, when
compared with process data, which characterize the SWS plant history. A scheme
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Fig. 3 Scheme of the plant (T103) and Tags of relevant variables

of the process is reported in Fig. 3. In the same figure, the relevant variable Tags are
indicated.

Input variables, relevant to the SWS plant modelling, were selected with the help
of plant technologists (see Table 1). Data were acquired at a sampling interval of
Ts = 1 min and then averaged to obtain a value each 15 min. Data, corresponding to
the time interval 2:15 a.m. to 4:30 a.m., are stored daily in the plant database, while
the plant outputs are measured in the lab, once a day, at 5.00 a.m.

The SSs are two nonlinear Multi-Input Single-Output models, as reported in (1).
Data were pre–filtered and normalized. A labelled dataset corresponding to 700
d was obtained. For each of them, 9 samples of the input variables are available.
Unlabelled input data were, therefore, 6300. To appreciate the advantages offered by
the semi-supervised approach with respect to a supervised method, the performance

Table 1 Input and output
variables, tags, and units

Variables description Tag Unit

u1 Steam to T103 14F008RC kg/h

u2 Feed to T103 14F010RC m3/h

u3 BA gas pressure 14P001RC N/cm2

u4 E-106 output flow temperature 14T003RC °C

u5 T-103 top steam temperature 14TI011 °C

u6 T-103 bottom to E-105 temp. 14TI015 °C

u7 T-103 bottom from E-105 temp. 14TI016 °C

y1 H2S content in SWS output 1404A004 ppm

y2 NH3 content in SWS output 1404A124 ppm
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obtained by using a DBN are compared with those of an MLP. The MLP was trained
by using the Levenberg-Marquardt algorithm, randomly splitting the 700 labelled
data into learning, validation, and test data sets. The number of hidden neurons of
both networks was determined by a trial-and-error strategy. A growing strategy was
used. Best networks were selected based on their estimation capabilities, evaluated
on the validation dataset. A 7-5-1 MLP has been obtained, for H2S estimation. A
7-7-1 MLP was obtained for NH3 estimation. The performance of the NH3 model is
reported in Fig. 4. In Fig. 4a, the estimated and measured output are compared. In
Fig. 4b, the EDA residual analysis (autocorrelation, lag plot, histogram, and normal
probability plot) is shown.

The DBN was trained with the Matlab® DeeBNetV3.2 [33]. The 6300 unla-
belled patterns were used for the pre-training, while the supervised fine-tuning was
performed with the labelled 700 patterns. The number of layers and neurons was
selected by using a trial-and-error procedure. DBNs with 2 and 3 hidden layers were
taken into account. Moreover, the maximum number of neurons, for each layer,
was limited to 20. Deeper networks were not taken into account to avoid too many
hyper-parameters. A growing strategy was adopted also in this case.

A 7-20-11-3-1 DBN was selected for the H2S estimation; a 7-5-6-8-1 network
was selected for the NH3. Figure 5 reports the results obtained for the estimation
of the NH3. In Table 2, RMSE and CC are reported, along with their improvements
with respect to MLP based SSs.

The residual analysis shows that the autocorrelation plot of the residuals is inside
the 95% confidence band for smaller time lags than those obtained by using MLP
based SSs. Also, RMSE and CC are improved. Results reported above give evidence
that that DBNs can offer advantages over simpler strategies, like BP, when a large
number of unsupervised data is available and the model performance are affected by
scarcity of labelled data.

5.2 Reducing Model Complexity by Using DBN

The following case studies are intended to focus on the potentialities offered by
DBNs in reducing the model complexity, both as regards the model order and the
number of model parameters. This is due to the fact that using multiple layers of
representation allows for approximating a more complex function, with a lower
number of parameters. Two case studies are illustrated. The first refers to the design
of an SS, required to estimate the Research Octane Number (RON) for a Reformer
Unit in a refinery [22, 34]. In this case, the use of a DBN allowed obtaining a dynamic
FIRmodel with a lower number of parameters. The second case of study refers to the
design of a Low-order Nonlinear FIR SS for Ionic Electroactive actuators [20]. In
this case, the model capability offered by the DBN allowed for obtaining a low-order
model, i.e. a model with a lower number of regressors.

In the first case, the RON value is measured by a Near-InfraRed (NIR) analyser.
The SS is required for estimating the RON value during maintenance. NFIR models
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Fig. 4 Performance of the MLP model for the NH3 estimation. a Time plot of the SS estimation
and the measured values; b EDA analysis of the model residual
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Fig. 5 Performance of the DBM for the NH3 estimation. a Time plot of the SS estimation and the
measured values; b EDA analysis of the model residual

Table 2 Model performance

RMSE CC �RMSE% �CC%

H2S_MLP 1.33 0.59

NH3_MLP 4.38 0.57

H2S_DBM 1.20 0.67 −9.8 13,6

NH3_DBM 4.09 0.64 −6.6 12,3
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should, therefore, be considered. Data come from the historical database of the refin-
ery. In the process, petroleum distillate (naphtha) reacts with a catalyst. The process
upgrades the low-RON feed into a high-RON liquid product. The plant works in two
different conditions, depending on the production policy.

In a first study [42], several modelling strategies were investigated for the plant.
In that contribution, it was shown that the process is nonlinear and simple modelling
structures do not give satisfactory performance. Deep structures were, therefore,
proposed. The structures consisted of two levels. The first level contains two models,
each designed for a single working condition. The second level fuses the output of
the first level models. The first level implements either linear or nonlinear dynamic
models, by using shallow MLPs. The second one uses a fuzzy rule for combining
the first-level outputs.

In this subsection, it is shown that DBNs can be used as an alternative method,
for solving the described application. The use of DBNs gives a simpler designs
procedure and uses a lower number of parameters. Eventually, improvements in the
model performance are obtained. A scheme of the plant is reported in Fig. 6.

The RON specification for the Unit is daily established. More specifically, the
maximum capacity of the plant is 250 m3/h of naphtha flow. When it is fed at its
maximum capacity, the RON target value is 96.5. When the flow is 220 m3/h the
RON target value is raised to 99. Data have been selected from the refinery database.
The sampling time is Ts = 3 min. The SS inputs are the temperatures of the four
reactors, RX 101 to RX 104 (in1 to in4), the total feed (in5), and the pressure of the
Debutanizer plant T104 head feed (in6). After outliers filtering, 9131 samples were
available for the SS design. In this case, no unlabelled data are available, and both
the unsupervised training phase and the fine-tuning use the same dataset. Regressors

Fig. 6 The powerformer unit
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Fig. 7 Cross-correlation between in1 and y

of the model were selected based on the correlation analysis, among the RON value
and the inputs, in1 to in6 . As an example, in Fig. 7 the cross-correlation between in1
and y is reported. It indicates that the regressor at lag 4 is more relevant.

Based on similar considerations, the following model has been used:

y(k) = f (in1(k − 4), in2(k − 4), in3(k − 4), in4(k − 4), in5(k), in6(k)) (8)

Three-hidden-layer DBNs were considered. An exhaustive search strategy for
selecting the number of neurons was adopted. The maximum number of neurons for
each layer was fixed to 20. The best working network was a DBN with 8, 12, and
12 neurons in the three hidden layers. The obtained results are reported in Table 3.
Time plots of the SS estimation, of the residual, and the corresponding histogram,
are reported in Fig. 8.

To appreciate the improvements obtained by the DBN, with respect to other deep
structures in [42], a comparison of the value of the CC, obtained for the validation
dataset, is reported in the following. Structures investigated in [42] are:

• one linear model, working on the whole data set;
• two linear models, activated by using a fuzzy selection algorithm;

Table 3 The DBN model
performance (Network
6-8-12-12-1)

# Of parameters 332

RMSE (Training) 0.240

RMSE (Testing) 0.257

RMSE (Validation) 0.280

CC (Training) 0.971

CC (Testing) 0.965

CC (Validation) 0.958
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Fig. 8 Time plot of the model estimation (a), model residual (b), and residual histogram (c)
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Table 4 CC comparison for models estimating the RON value

Model structure CC

One linear model working on the whole data set 0.7742

Two linear models activated by using a fuzzy selection algorithm 0.7977

One shallow neural model working on the whole data set 0.8541

Two shallow neural models activated by using a fuzzy selection algorithm 0.8722

DBN model 0.958

• one neural model, working on the whole data set;
• two neural models, activated by using a fuzzy selection algorithm.

The values of CC for all thementionedmodels are reported in Table 4.As a general
trend, it is possible observing that deep structures outperformshallowstructures. Such
a tendency is respected both for linear and nonlinear structures. Moreover, the DBN
works much better than all other tested structures. Finally, the design procedure for
DBN is much simpler than that required for the deep structures proposed in [42].
This further shows the advantages obtained when DBNs are used in SSs design.

As the second case of study, the possibility of obtaining a low-order model for
an electromechanical transducer is described. Polymeric transducers have raised the
interest of both the scientific and industrial community since they are a bundle of
enabling technologies, towards the realization of Smart Systems. Among polymeric
composites, capable of electromechanical transduction, Ionic Polymer-Metal Com-
posites (IPMCs) have raised a vivid interest with many scientific studies published
in the last three decades [35].

In the following, the application of deep networks for the design of a low-order
SS, modeling the vibrations of an IPMC actuator, in a cantilever configuration, is
described [20]. Part of the interest in IPMCs is due to the possibility of using them
in medical applications [36], where both the complexity and the size of the actuating
system are relevant. An SS can, therefore, help in limiting the complexity of the sys-
tem by eliminating the need for a hardware sensor for the independent measurement
of the transducer actual position. Moreover, low-order models limit the computa-
tional load, with beneficial effects in real-time applications. To this aim, a strategy
for lower-order NFIR model design was investigated, among linear models, PCA,
shallow and deep neural networks.

IPMCs consist of a bulk ionomeric polymer, such as Nafion®, covered on both
faces by two electrodes. These are, generally, realized by using noble metals. In the
bulk of the composite, fixed anions and mobile cations are in electric equilibrium.
Mobile cations can, anyway, migrate when a voltage signal (of the order of few volts)
is applied to the electrodes. The charge unbalance is the origin of the IPMC bending.

Data were acquired by measurement surveys, performed in an environment with
controlled temperature and humidity. The IPMC actuator was mounted as shown in
Fig. 9. A sine sweep voltage, with frequency in the range 50 MHz–50 Hz, in 10 s,
and a peak-to-peak amplitude of 5 V, was used as the electric input.
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Fig. 9 The IPMC actuator in the cantilever configuration

Based on the NFIR model (1), the simplest model structure was searched for.
Different model classes and orders were, therefore, investigated. In details, according
to gray box models already available in the literature [37, 38], model orders in the
range 9 to 3 were identified for the following model structures:

(1) Linear dynamic FIR models
(2) NFIR models, based on one hidden layer MLPs
(3) NFIR models based on Nonlinear Principal Component Regression (NPCR)
(4) NFIR models, based on two–hidden–layers MLPs
(5) NFIR models, based on three hidden layers DBNs
(6) Three hidden layers DBNs with regressors k–9, k–7, k–5, k–3 and k
(7) Three hidden layers DBNs with regressors k–9, k–6, k–3, and k.

Models (1) to (7) have been compared by estimating the RMSE of the model
residual and the CC, between the estimated and measured output. The coefficients
have been computed both on the learning and test datasets. Obtained results are
reported in Tables 5a, 5b, 6a and 6b, respectively. The analysis of the reported tables
shows that deeper structures work better than shallower ones. Moreover, the higher
the order model, the better the performance. The best SS has been obtained with a
DBN, implementing a 9-th order NFIR. The network structure consists of 10, 11, and
6 neurons in the hidden layers. Moreover, the DBN based 5-th order model (9, 5, and
5 neurons in the hidden layers), works better than any shallow structure considered.
The same network works better than the best performing two-hidden-layer model,
i.e., the 7-th order model. MLPs, trained with BP, suffer from overfitting problems.

On the contrary, DBNs looks not to be affected by overfitting, as shown by the
agreement between the learning and test performance. The reported results give
evidence that the use of DBNs allows for obtaining better working low-order models
of the IPMC actuator. It is worth observing that the 9-th order DBN model has 300
parameters, while the 5-th order DBN requires only 122, which is further evidence of
the model simplification obtained by using DBNs. Such a simplification represents a
valuable result when online applications are of interest since both the lower order and
the lower number of parameters reduce the computational complexity. In Fig. 10, the
time plot of actual IPMC tip deflection is compared with the 5-th order DBN based
SS estimation.
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Table 5 A. Values of CC for different model structures and model orders (learning data). B. Values
of CC for different model structures and model orders (test data)

Model structure Model order

9 8 7 6 5 4 3

(A)

1 0.46 0.44 0.43 0.42 0.41 0.38 0.35

2 0.98 0.98 0.95 0.95 0.92 0.92 0.87

3 0.96

4 0.995 0.996 0.995 0.993 0.994 0.981 0.979

5 0.997 0.997 0.996 0.995 0.991 0.990 0.976

6 0.996

7 0.996

(B)

1 0.44 0.39 0.32 0.26 0.21 0.15 0.12

2 0.69 0.72 0.87 0.78 0.69 0.50 0.29

3 0.84

4 0.901 0.920 0.956 0.838 0.670 0.568 0.620

5 0.987 0.985 0.976 0.981 0.975 0.955 0.720

6 0.981

7 0.981

Though the cases of study described in this subsection refer to quite different
phenomena, reported results show the potentialities of DBN in reducing both the
complexity of the structure and of the design structure of SS.

5.3 Gaining Insight on the SS Structure by Exploiting DBN
Features

Results reported in the literature show the capability of deep networks to extract
nonlinear features from data, going from low-level features to higher-level ones. In
this section, a case study is reported about the possibility of using features extracted
by aDBNfor inferring information on themodel structure.More specifically, features
extracted during the unsupervised learning phase of DBNs are used to estimate the
unknown value of the measurement finite time delay that affects an industrial plant.
As will be described in the following, the delay estimation was obtained by a cross-
correlation analysis between the DBN features and the recorded plant output.

The approach was applied for the design of an SS for estimating the butane
percentage in the penthane bottom flow (C4 in C5) of a debutanizer distillation
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Table 6 A. Values of RMSE for different model structures and model orders (learning data). B.
Values of RMSE for different model structures and model orders (test data)

Model structure Model order

9 8 7 6 5 4 3

(A)

1 0.79 0.80 0.80 0.81 0.81 1.25 1.83

2 0.20 0.17 0.27 0.27 0.34 0.94 0.44

3 0.25

4 0.087 0.078 0.093 0.104 0.099 0.650 0.183

5 0.073 0.071 0.078 0.085 0.119 0.297 0.192

6 0.076

7 0.074

(B)

1 1.15 1.18 1.21 1.23 1.25 1.25 1.27

2 0.94 0.98 0.89 0.86 0.94 0.94 1.33

3 0.85

4 0.560 0.514 0.377 0.738 0.650 0.650 1.296

5 0.222 0.226 0.286 0.266 0.297 0.297 0.888

6 0.274

7 0.253
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Fig. 10 Time plots of the actual IPMC output vs. its estimation
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column. Data comes from a refinery working in Sicily, Italy. The debutanizer column
represents a case of study widely considered in the SSs literature [12, 13, 28, 39,
40]. A key aspect making this an interesting case of study is that the plant is affected
by a large unknown measurement delay. The delay is caused by the position of the
measurement hardware, used to evaluate the quality of the process output. In fact,
relevant quantities are measured by using an analyzer, which is settled in another
column. A view of the relative position of the SS and the corresponding analyzer is
reported in Fig. 11, where the encircled A refers to the position of the measurement
hardware.

Table 7 reports the input variables considered in the SS design, as suggested by the
plant technologists. The reader interested in further details on themeasured quantities
can refer to [41].

Fig. 11 A scheme of the involved columns

Table 7 Input variables

Variable name Variable description

u1 Head flow temperature

u2 Head flow pressure

u3 Head reflux charge

u4 PLG Flow to plant 900

u5 Tray 6 temperature

u6-7 Mean value between temperature of vapors from E108A and E108B

u8 Vacuum bottom valve

u9 Temperature of flow from E150B

u10 Temperature of flow from E150A

u11 Reboilers residual flow

u12 Bottom flow from E105
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In [40], an SSwas obtained by using a complex neural structure.More specifically,
the three MLPs were cascaded for implementing a NARX model. In the following
DBNs are exploited for designing a simplified SS structure, implementing an NFIR
model [41].

Based on the results of the cross-correlation analysis between the output and
candidate inputs the following model structure was obtained:

ŷ(k) = f (u1(k − 10), u2(k − 10), u3(k − 10), u3(k − 12), u3(k − 14), u3(k − 16), u3(k − 18), u4(k − 10),

u5(k − 10), u5(k − 12), u5(k − 14), u5(k − 16), u5(k − 18),

u6−7(k − 10), u6−7(k − 12), u6−7(k − 14), u6−7(k − 16), u6−7(k − 18),

u8(k − 10), u9(k − 10), u10(k − 10), u11(k − 10), u12(k − 10), (9)

Time lags in (9) take into account the unknownfinite delay. A solution to this prob-
lem, exploiting DBNs features is described in the following. The proposed procedure
can be used to approach the general problem of unknown finite delay estimation in
SSs design, when nonlinear processes are of interests and/or ad hoc experiments
cannot be executed. In fact, in the process industry, SSs are generally designed based
on data stored in the historical plant databases, which are recorded during the normal
working conditions. Signals could be, therefore, not optimal for the model identifi-
cation. Selecting the model order and finite delay can be therefore a difficult task.

In the following, it is described how features, obtained after the unsupervised
learning phase of a DBN, can give an alternative representation of inputs, useful
when searching for the value of the finite delay. Let us indicate with max_lag the
maximum measurement time delay. Insight about its value could be given by plant
technologists. Let us consider with DBNwithm neurons in the last hidden layer, i.e.,
m latent variables, and let us indicate with L a matrix containing the m features:

L = [
l1 . . . lm

]
(10)

where li ∈ �N is the i-th latent variable and N is the training set size. Collect the
time-shifted values of the output in ylag, as it follows:

ylag = [
y0 . . . yi . . . ymax_lag

] =
⎡

⎣
y(1) . . . y(max_lag + 1)
. . . . . . . . .

y(N − max_lag) . . . y(N )

⎤

⎦.

(11)

CC values are collected in a vector CCli ∈ �m. It contains the CC between the
i-th column of ylag and each latent variable. The norms of vectors CCli can be
computed as:

di = || cl i · clTi || (12)
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Fig. 12 Plots of the di coefficients vs. the number of lags

where i ∈ [0, max_lag]. The value i that maximizes (12) is assumed as the system
delay:

delay = argimax(di ). (13)

The proposed procedure revealed to be robust with respect to the DBN structure,
as shown in Fig. 12. It reports di as a function of the time delay, for a number of
DBNs. It can be observed that most of the curves have a maximum for a delay equal
to 10, this value was assumed as the measurement delay to be used in the SS design.

Having estimated the finite delay, the supervised fine-tuning learning of DBNs
was possible. SSs performance was compared by estimating the RMSE, between the
plant output and the corresponding model estimation, and the CC, between the same
quantities. The DBN with 10-6-6 hidden neurons gave the best results, which are
summarized in Table 8, for the learning, validation, and test data sets, respectively.

Acomparisonbetween the plant output and theSSestimation is reported inFig. 13.
The methodology described in this subsection, can not be applied unless a tool

for unsupervised feature extraction is available. Using DNBs revealed a promising
approach since DBNs allow for both feature extraction and output estimations, after
the fine tuning of the network is performed, in a simple and efficient way.

Table 8 Perfomance of the
DBN SS

Learning Validation Test

CC 0.93 0.81 0.74

RMSE 0.88 2.42 2.07
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Fig. 13 Time plots of the actual debutanizer output vs. its estimation

6 Conclusion

Deep learning has been widely and successfully applied in many application fields,
to the point that it represents the state of the art in solving a large number of real-
world problems. Only recently, the promising capabilities of deep learning have been
exploited in the design of SSs. As a matter of fact, there are peculiarities in the deep
learning that can face unsolved problems in this field, especially if SSs for the industry
are considered. This chapter focused on the application of DBNs for SS design and
evidence was given, by real-world cases study, of how these structures can help in
learning more complex models, reducing computational complexity, efficiently use
unlabelled data, extracting high-level features from data and exploiting them in SS
design. Further deep structures, such as SAE, CNN, ensemble methods, randomized
methods, have been, also, proposed in the literature and successful results have been
described. These deep structures and their performance in SS design, have been
described in the state of the art section of this chapter.

The full exploitation of deep learning in SSs design requires that some open prob-
lems are solved. One of the problems is the increased number of hyperparameters,
which is a direct consequence of the increased number of used layers. Further, theo-
ries and metrics about the role of the semi-supervised phase in the SS performances
are to be introduced. Also, features extraction and interpretability should be further
investigated. In fact, though high-level features are extracted from input data, their
relevance to the plant output is not taken into account, nor any physical meaning can
be attributed to the extracted features. Even methods for determining the number of
features relevant for the SS are to be investigated.

As a final remark, it is worth noticing that deep learning has been introduced for
solving problems in the presence of big datasets. This is, generally, not the case in SS



www.manaraa.com

Deep Learning for Soft Sensor Design 57

design. On the contrary, the designer has to face the problem of historic data scarcity.
The designer needs to carefully consider such a difference and adapt the network
structure to the available dataset. Notwithstanding the open problems mentioned
above, promising results obtained by applying deep learning to SS design, including
the ones based on DBNs described in this contribution, allows foreseeing that they
can assume a relevant role in this field and produce state of the art SSs.
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Case Study: Deep Convolutional
Networks in Healthcare

Mutlu Avci, Mehmet Sarıgül and Buse Melis Ozyildirim

Abstract Technological improvements lead big data producing, processing and
storing systems. These systems must contain extraordinary capabilities to overcome
complexity of the big data. Therefore, the methodologies utilized for data analysis
have been evolved due to the increase in importance of extracting information from
big data. Healthcare systems are important systems dealing with big data analysis.
Deep learning is the most applied data analysis method. It becomes one of the most
popular and up-to-date artificial neural network types with deep representation abil-
ity. Another powerful ability of deep learning is providing feature learning through
convolutional neural networks. Deep learning has wide implementation areas in
medical applications from diagnosis to treatment. Various deep learning methods
are applied to the biomedical problems. In many applications, deep learning solu-
tions are modified in accordance with the requirements of the problems. Through
this chapter the most popular and up-to-date deep learning solutions to biomedical
problems are discussed. Studies are analyzed according to problem characteristic,
importance of solution, requirements and deep learning approaches to solve them.
Since the deep learning systems have very effective image and pattern recognition
ability, biomedical imaging becomes one of the most suitable application areas. Dur-
ing the first diagnosis and continuous tracking phase of the patients, deep learning
systems offer very effective aids to the medicine. Although organ, disease or data
type classifications are possible for biomedical application categorization, organ and
disease combination are taken into consideration in the chapter.

M. Avci
Faculty of Engineering, Biomedical Engineering Department, Cukurova University, Adana,
Turkey
e-mail: mavci@cu.edu.tr

M. Sarıgül
Computer Engineering Department, Iskenderun Technical University, Hatay, Turkey
e-mail: mehmet.sarigul@iste.edu.tr

B. M. Ozyildirim (B)
Faculty of Engineering, Computer Engineering Department, Cukurova University, Adana,
Turkey
e-mail: mozyildirim@cu.edu.tr; melis.ozyildirim@gmail.com

© Springer Nature Switzerland AG 2020
W. Pedrycz and S.-M. Chen (eds.), Development and Analysis of Deep
Learning Architectures, Studies in Computational Intelligence 867,
https://doi.org/10.1007/978-3-030-31764-5_3

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31764-5_3&domain=pdf
mailto:mavci@cu.edu.tr
mailto:mehmet.sarigul@iste.edu.tr
mailto:mozyildirim@cu.edu.tr
mailto:melis.ozyildirim@gmail.com
https://doi.org/10.1007/978-3-030-31764-5_3


www.manaraa.com

62 M. Avci et al.

Keywords Deep learning · Healthcare · Diagnosis systems · Machine learning

1 Introduction

Ever increasing effectivity of Convolutional Neural Network (CNN) make it one
of the most popular and up-to-date artificial intelligence approach. It also has wide
implementation area in medical applications from diagnosis to treatment. Various
deep learning methods either directly applied or applied after modifications to the
biomedical problems. In many applications, deep learning solutions are modified in
accordance with the requirements of the problems. As the number of applications
increases, some review studies were published in the literature [1, 2]. In [1], deep
learning methods applied on various kind of data such as clinical images, electronic
health records, genomics are analyzed, and challenges of deep learning methods are
discussed briefly. On the other hand, in [2] deep learning architectures and their appli-
cations in medical imaging are analyzed. Through this chapter, the most popular and
up-to-date deep learning solutions to biomedical problems are mentioned unlike the
reviews. Deep learning solutions are analyzed according to problem characteristic,
importance of solution, requirements and deep learning approaches to solve biomed-
ical problems. Since the deep learning systems have very effective image and pattern
recognition ability, biomedical imaging becomes one of themost suitable application
areas. During the first diagnosis and continuous tracking phase of the patients, deep
learning systems offer very effective aids to the medicine. Although organ, disease
or data type classifications are possible for biomedical application categorization,
organ and disease combination are taken into consideration in the chapter.

Brain diseases are one of the most popular deep learning application topics.
Alzheimer’s Disease and Parkinson are up-to-date diseases to be detected as ear-
lier as possible. Early detection of them is crucial for early treatment and to prevent
brain tissue damaging. Alzheimer’s disease classification of clinical data for medical
conditions has always been challenging, and one of the most problematic aspect.
One of this kind works is given in [3] where an improved form of Deep Learning is
applied to the Alzheimer’s Disease Neuroimaging data. The difference of this pro-
posed novel method for learning the manifold of 3D brain images is the absence of
predefined similarity measure or a prebuilt proximity graph for the manifold space
and also it may not be locally linear. In another work, a CNN is trained to distin-
guish an Alzheimer’s brain from a normal, healthy brain [4]. The importance of this
approach lies on the potential to develop a predictive model or system in order to
recognize the symptoms of Alzheimer’s disease. Also, stage estimation of the disease
is successfully done by the CNN. Utilizing the CNN, functional magnetic resonance
images (MRI) data of Alzheimer’s subjects are separated with 96.85% accuracy on
test data. In some cases, combining multi-modality brain data for disease diagnosis
commonly leads to performance improvement [5]. Since the datamay be incomplete,
some modality might be missing for some subjects. A deep learning-based frame-
work for estimating multi-modality imaging data is proposed in [5]. The CNNs in
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this work has volumetric input and output modalities. The CNN contains a large
number of trainable parameters to model the relationship between input and out-
put modalities. Proposed CNN is tested on the Alzheimer’s Disease neuroimaging
Initiative (ADNI) database. Test results of the CNN has outperformed success with
respect to prior methods [5].

In [6], earlier detection of Alzheimer is aimed by analyzing MRI. MRI and func-
tional MRI (fMRI) are the most common diagnostic tools for Alzheimer’s disease
in clinical research. Detection of Alzheimer’s disease is done by considering the
similarity of Alzheimer’s disease MRI data and standard healthy MRI data. This
task can be done by a deep CNN. Brain tumor patients with glioma requires essen-
tial treatment planning with accurate prognosis. Conventional survival prediction
generally utilizes clinical information and limited handcrafted features from MRI.
This is a time consuming and subjective diagnostic approach. In [7], a deep learn-
ing framework to automatically extract features frommulti-modal preoperative brain
images of high-grade glioma patients is developed. Experimental results demonstrate
that the approach can achieve an accuracy as high as 89.9%. This result shows the
importance of CNN for functional neuro-oncological applications. In [8], CNN is
applied to detect multiple sclerosis (MS) pathology. Although changes in brain mor-
phology and white matter lesions are two hallmarks of MS, their variability beyond
volumetric is poorly characterized. In this work, CNN classification results show
very high accuracy on automatically discover the classic patterns of MS pathology.
In [9], Management of Parkinson’s Disease (PD) utilizing deep learning is aimed.
Although automatic assessment in PD has been studied, so far, no reliable approach
has been devised for clinical practice. In the work, an assessment system that abides
practical usability constraints and applies deep learning to differentiate disease state
in data collected in naturalistic settings is proposed. Results show that deep learning
outperforms other approaches in generalization performance, despite the unreliable
labelling characteristic for the problem setting.

Mammographic risk scoring has commonly been automated by extracting a set
of handcrafted features from mammograms and relating the responses directly or
indirectly to breast cancer risk. A CNN considering breast density segmentation and
scoring of mammographic texture inputs is proposed in [10]. Microcalcification is
an effective indicator of early breast cancer. To improve the diagnostic accuracy
of microcalcifications, a deep learning-based discrimination classifier is proposed
in [11]. Proposed method improved the microcalcification classification accuracy
to 87.3%. Deep learning solutions to Mammogram analysis are done in [12–14].
All these deep learning implementations achieved effective accuracy performance
results.

Diabetes is a chronic condition affecting millions of people worldwide. One of its
major complications is diabetic retinopathy (DR). This is the most common cause of
legal blindness in the developed world. Early screening and treatment of DR prevents
vision deterioration; however, the recommendation of yearly screening is required.
In [15, 16], possibility of fully automated deep learning system solutions is proposed
for prevention of blindness.
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Deep learning solutions of cervical diagnosis [17], bodypart recognition [18], lung
cancer detection [19], neuroimaging [20] and cardiac diagnosis [21] are implemented
successfully. In addition to these mentioned applications there exist hundreds of
biomedical applications and application possibilities of deep learning systems.

In the following parts of the chapter, first deep learning methodologies utilized in
these studies are introduced and are analyzed in detail.

2 Deep Learning Methods in Healthcare

In this section, deep learning methods frequently used in healthcare systems are
given. After introduction of the convolution neural networks, autoencoders, deep
polynomial network, and hybrid methods are investigated. After then convolutional
neural network based methods and techniques used in deep learning are taken into
consideration. The introduced methods are chosen in accordance with the studies
analyzed in the next chapter.

2.1 Convolutional Neural Networks

CNN is a well-known deep learning structure. A general CNN structure consists
of convolutional layers, pooling layers, and fully connected layers. Convolutional
layers are used to extract features from high sensory input data while pooling layers
are used to reduce the size of the data and fully connected layers serve as a classifier
[6, 22, 23].

2.1.1 Convolutional Layers

Convolutional layers are the parts of CNN where convolution operation is executed.
This operation is applied by using number of certain sized filters. Each filter is shifted
over the image, the activation function is applied to the output and a feature map is
created with these calculated values. The effectiveness of the convolution process
depends on two concepts. These are receptive field and weight-sharing mechanism.
The receptive field of a neuron represents the previous layer neurons to which the
neuron is linked. Thefield size is equal to number of the filters used in the convolution.
The receptive field concept significantly reduced the number of parameters used in the
artificial neural network. The weight sharing mechanism is that the filters have fixed
values during one epoch of shifting operation over the entire image. This provides
searching the same pattern in the whole image.
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2.1.2 Convolution Operation

The convolution process is performedwith constant sized filters. These filters are slid
over the image, and the activation function is applied. A feature map is created for
each filterwith these calculated values. Convolutional filters are trainable parameters.
During back propagation, the weights of the filter are trained according to the amount
of error that falls on the relevant feature map. Let vxy

i j be the value at position (x, y)
on the j th feature map in i th layer. vxy

i j can be calculated as in (1).

v
xy
i j = σ(bi j +

∑

m

Pi−1∑

p=0

Qi−1∑

q=0

wpq
i jmv

(x+p)(y+q)

(i−1)m ) (1)

where σ is the activation function, bi j is the bias value, Pi and Qi are the sizes of
the filter, m is index of the feature map and i is the index of convolutional layer.

2.1.3 Pooling Operation

Pooling operation is used for down-sampling the feature maps. The aim of pooling
layer is to reduce the size of the feature maps without losing the required informa-
tion for classification. Pooling operation also ensures that the extracted features are
independent of the pattern scale or orientation. The most popular pooling operations
are max-pooling and average pooling operations.

2.1.4 Fully Connected Network

The fully connected network consists of multiple layers including neurons connected
to each other. It is generally used as a classifier in CNN structures.

2.2 Autoencoders

Autoencoder is the name of the network structure developed for data encoding.
Deep autoencoders consists of convolution and pooling layers. While features are
extracted with convolutional part with these layers, obtained features are decoded by
using upsampling or deconvolutional layers. Figure 1 shows an autoencoder structure
used for reconstruction.

There exist different types of autoencoders, some of them are described in the
following subsections.
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Fig. 1 Use of autoencoder for reconstruction

2.2.1 Sparse Autoencoder

Sparsely connected autoencoder structure is similar to fully connected autoencoder,
however, connections between the layers are sparse.

2.2.2 Stacked Autoencoders (SAEs)

SAE is name of a structure composed of two or more autoencoders whose outputs
are connected sequentially [24].

2.2.3 Denoising Autoencoders

Unlike the traditional autoencoders, denoising autoencoders aim to generate a good
representation even for corrupted input data. Training algorithm ismodified to accom-
plish this goal. Instead of using the original images in the training, randomly distorted
images are used in the encoding process as inputs. This structure is then trained to
produce the original data from this encoded data obtained from noisy input. Let’s
x be the original image, a distorted version, x̃ , is generated. This generated image
is passed through the autoencoder. In the decoding process, the error between the
original image and decoded image is used to train the weight values [25]. Figure 2
shows structure of denoising autoencoder.

2.2.4 Stacked Denoising Autoencoders (SDAE)

SDAEs are denoted structures consisting of two or more denoising autoencoders
whose outputs of each autoencoder are connected to next one.
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2.3 Deep Polynomial Network

Deep Polynomial Network is a neural network structure in which each hidden layer
is responsible for a different level of polynomial learning. A 4-level polynomial
network is given in Fig. 3.

2.3.1 Stacked Deep Polynomial Network

Stacked Deep Polynomial Network is composed of two or more Deep Polynomial
Networks connected sequentially.

2.4 Hybrid Methods

2.4.1 Convolutional Autoencoder Neural Network

ConvolutionalAutoencoderNeuralNetwork (CANN) structure utilizes unsupervised
learning on autoencoder to optimize the parameters of the convolutional layers. This
structure requires a small amount of labelled data for fine-tuning operation.

Convolutional autoencoders are used for reconstructing input images by using
generated feature maps after the convolution operation. This process is called as
inverse convolutional operation. Let f (.) be the convolutional encode operation and
f ′(.) be the convolutional decode operation, n is the number of l × l sized feature
maps, convolutional encoding operation is executed as follows:

oi j = f (xi ) = σ
(
wj .xi + b

)
(2)

Fig. 2 Structure of
denoising autoencoder
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Fig. 3 4-level polynomial
network

where w denotes the weight, b is the bias value of the corresponding filter, x is
the input image, and σ is a nonlinear activation function such as ReLu, sigmoid or
hyperbolic tangent. Decoding operation is carried out as follows:

x̂i = f
′(
oi j

) = ∅
(
ŵ j .oi j + b̂

)
(3)

After generating a certain number of patches, the corresponding parameters are
trained using the squared error between the original images and the reconstructed
images with SGD algorithm [26].

2.4.2 Convolutional Recursive Neural Network

Convolutional recursive neural network (CRNN) is another unsupervisedCNN struc-
ture. CRNN training consists of three steps: pretraining the convolutional neural
network, generating local representations, and learning hierarchical feature repre-
sentations.

• Pretraining CNN filters: Number of different unsupervised methods such as sparse
autoencoding, sparse restrictedBoltzmannmachines, k-means clustering, gaussian
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mixtures can be utilized to learn convolutional filters. The best performing method
in the literature has been shown as k-means clustering. In this operation, number
of image patches are randomly selected. After that k-means clustering algorithm
is used for minimizing sum of squared Euclidean distances between these patches.
In this way, k filters { fk, k = 1, 2, . . . k} are learned as follows:

fk(x) =
{
1, 1, i f k = argmin j ||m j − x ||
0, otherwise

(4)

• Generating local representations: This part of the algorithm simply passes the
images through the CNN structure to generate the representations.

• Learning feature representations: Recurrent neural network (RNN) is utilized in
this part of the network. RNN provides learning hierarchical feature representa-
tions by implementing recursion in a neural network structure. Backpropagation
algorithm is used for training the RNN structure [27].

2.5 Convolutional Neural Network Based Methods

AggNet, Spatially Constrained CNN, Temporal Fusion CNN, Triplanar CNN,
Regions with CNN, Class Structure based DCNN, Patch wise CNN, Semantic wise
CNN, Cascaded CNN, Hough Voting with CNN, U-Net are given in this part.
Techniques used in deep learning methods are also given. They are dropout, data
augmentation, and finetuning. The most popular pretrained deep learning models
LeNet, AlexNet, GoogLeNet, VGGNet, ResNet, and DenseNet are briefly intro-
duced through the subsections.

2.5.1 AggNET

AggNET is a network developed for crowdsourcing applications. The difference
between this structure and the traditional CNN structure is that it contains a crowd-
sourcing layer after the output layer. This layer determines the appropriate output
values for the network structure by applying the ExpectationMaximization algorithm
to the votes received from the users about the unlabeled data.Usingdata augmentation
has also been shown as a way to improve the effectiveness of this structure [28].

2.5.2 Spatially Constrained Convolutional Neural Network

Spatially Constrained CNN (SC-CNN) is a network developed to detect cancerous
structures. In order to detect the nuclei of the cancerous structure, the output layer
of this structure is designed in two dimensions. While the traditional CNN ends
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Fig. 4 Architecture of
SC-CNN

with a softmax layer, in this structure, outputs are handled in 2 dimensions and each
output neuron represents the possibility of being a cancerous cell nucleus. Probability
maps are used based on the proximity of the real nucleus during training. Figure 4
represents architecture of SC-CNN.

2.5.3 Temporal Fusion CNN

In contrast to fully visible images on a single layer, data, such as EMR, varies over
temporal extent. Temporal connectivity is an important factor for prediction. For this
reason, training data is created as bag of samples containing frames for a short fixed-
sized time interval. This provides learning of temporal features. Temporal Fusion
CNN models are based on the fusing information across temporal domain either by
modifying the first convolutional layer to extend in time or by placing two separate
single-frame networks and fusing their outputs after in the processing. Figure 5 shows
structure of the temporal fusion CNN.

2.5.4 3D CNN

The traditionalCNNstructure is designed towork on2D images. In contrast, 3DCNN
structure works on 3-dimensional data. Convolutional filters are 3-dimensional and
apply 3-dimensional convolution operation. Let vxyz

i j be the value at position (x, y, z)
on the j th feature map in i th layer. 3D convolution process can be defined as:
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Fig. 5 Temporal fusion CNN
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xyz
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m

Pi−1∑

p=0

Qi−1∑

q=0
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r=0

wpqrv
(x+p)(y+q)(z+r)
(i−1)m ) (5)

where σ is the activation function, bi j is the bias value, Pi , Qi , and Ri are the sizes
of the 3D filter, m is index of the feature map and i is the index of convolutional
layer [29].

2.5.5 Triplanar CNN

Using 3D CNN for 3-dimensional data greatly increases the number of parameters
of the neural network structure. Triplanar CNN structure handles 3D data by turning
it into 2D for each dimension. Three 2D-CNN structures are designed for each
dimension (xy, xz and yz spaces), and 2Dplanes in each dimension are passed through
these networks as a patch. These three networks are connected only in output layers
[30]. Figure 6 denotes Triplanar CNN architecture.

2.5.6 Regions with CNN (R-CNN)

R-CNN is a CNN structure utilizing SVM approach rather than fully connected
network for classification.

2.5.7 Class Structure Based DCNN (CSDCNN)

CSDCNN is a deep neural network structure providing non-linear representations.
Thismethod combines the feature extractionprocesswith feature learning.Therefore,
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it does not require hand-design features. CSDCNN is able to learn discriminative and
semantic features for all levels [31].

2.5.8 Patch Wise CNN

Patch-Wise CNN is a simple method used for segmentation. An NxN patch around
each pixel inside the image is taken and CNN model is trained with these patches.

2.5.9 Semantic Wise CNN

Semantic-WiseCNNcontains convolutional, pooling, upsampling anddeconvolution
layers similar to autoencoders and makes predictions for each pixel inside the image
for segmentation [32].

2.5.10 Cascaded CNN

Cascaded CNN is composed of two CNN structures. The output of the first CNN is
the input for the second one.

2.5.11 Hough Voting with CNN

Hough voting with CNN is an efficient segmentation method based on a voting
strategy. It is amulti-modal, multi-region and robust. It considers not only categorical
predictions extracted byCNNbut also features extracted in intermediate layers. These
features are useful for tasks such as image retrieval [33].

Fig. 6 Triplanar CNN
Architecture
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2.5.12 U-Net

U-net is a novel architecture designed for segmentation. “U-net” stands for “U” shape
of the structure. First part of the network consists of convolution and pooling layers
while the second part contains upsampling operations [34].

2.6 Techniques Used in Deep Learning Methods

Overfitting is themost important problem for themachine learning algorithms.More-
over, deep learning algorithms require more data andmore training epochs to provide
efficient results. There are some techniques to solve these problems. In this section,
these techniques are discussed.

2.6.1 Dropout

Dropout is a technique developed to avoid overfitting in neural networks. In this
method, activations of some randomly chosen neurons are taken zero during the
training. For each iteration, different neurons are selected randomly. This allows a
more reliable training process.

2.6.2 Data Augmentation

Data augmentation is artificially differentiating the data. Generated artificial data is
also included in the training set. This provides a better generalization by allowing
objects to be recognized independently of their size and position.

2.6.3 Fine Tuning

Finetuning operation is the training of a previously trained deep learning network
for a new set of data. This operation significantly shortens training time.

Popular Pre-trained Deep Learning Models

In this section, the pre-trained deep learning models used as finetuning dataset for
the biomedical applications are explained.
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LeNet

LeNet was proposed by LeCun in 1998. Although it is simple according to the current
deep learning models, it is important to be the first of its kind. In this structure,
two convolution and pooling layer pairs are followed by a fully connected network
structure. This structure was used for the classification of MNIST dataset [4]. Its
structure is given in Fig. 7.

AlexNet

AlexNet is a well-known deep learning structure. It showed the best performance
in ILSVRC2012 competition by classifying the ImageNet with 16.4 top5 error rate.
ImageNet is a very popular vision dataset containing 1.3 million images divided
into 1000 classes. AlexNet has a similar structure with LeNet, however it has two
additional parallel CNN structures containing more filters. These parallel CNNs are
end upwith a fully connected classifier [30, 35]. Figure 8 shows theAlexnet structure.

GoogLeNet

GoogLeNet is the winner of ILSVRC2014 competition. Top-5 error rate of
GoogLeNet was 6.67% on ImageNet dataset. While GoogLeNet is similar to LeNet,
it includes a novel module called Inception. This module contains convolution oper-
ations with different sized kernels and pooling operations. GoogLeNet with 22 layers
has 4 million parameters and has performed much better than AlexNet containing
60 million parameters [30].

VggNet

VggNet is another popular model participated to ILSVRC2014. It contains 16 con-
volutional layers applying 3 × 3 convolution operations. The biggest problem of
VggNet is that it includes 138 million parameters to be trained [30]. Figure 9 repre-
sents the structure of VggNet.

ResNet

ResNet (Resudial Neural Network) is the winner model at the ILSVRC2015 compe-
tition. It achieved a top-5 error rate of 3.57% on ImageNet dataset which is better than
human-level performance. What makes ResNet different from other neural network
structures is its “skip connections” concept. A skip connection denotes merging the
input of the convolutional block with its output by adding them together.

DenseNet

DenseNet was developed with a similar idea to ResNet. However, its connections do
not only link the previous layer to the next layer but also all subsequent layers.
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Fig. 9 VggNet

3 Deep Learning Applications in Healthcare

Although biomedical science contains many sub-areas for Deep Learning implemen-
tations, the most popular of them are selected and given in the following parts. These
are mainly classified as breast and breast cancer related applications, brain imag-
ing and diagnosis related applications, diabetic related applications, cardiac related
applications and lung cancer related applications. Through all of these applications
Deep Learning systems are adapted to the nature of the medical problem and their
estimations are evaluated with known and experienced test data.

3.1 Breast Mass and Microcalcifications Detection for Breast
Cancer Classification

Mammography is an efficient imaging technique used for detecting masses and
microcalcifications. Masses are gray or white regions in the breast area with oval,
irregular, or lobulated shapes. Mass segmentation is an important step for cancer
detection [36].

In [37], masses are detected by combination of deep learning and random forests
approach. First, candidate mass regions are determined by using cascade of multi-
scale deep belief network classifiers with Gaussian mixture model. Then, correct
regions are detected by a cascade of deep convolutional neural networks consisting of
convolutional layers followedby linear SVM.After obtaining regions,morphological
and texture features are extracted from correct regions and classified by cascade of
random forests classifiers. While the method detects all mass candidates at the first
step, final true positive rates are 0.96 for INbreast dataset, and 0.75 for DSM-BCRP
dataset. Authors propose two potential functions: conditional random field (CRF)
and structured support vector machine (SSVM) on their previously proposed deep
structure, respectively. It is reported that dice indexes obtained with CRF and SSVM
are 0.9 [37].

In [13], Bayesian optimization is applied for the mass detection step. After apply-
ing multi-scale deep belief networks and Gaussian mixture model classifier, false
positives are reduced by cascade of CNN and RF. At the last part, Bayesian optimiza-
tion is applied to refine the results. While dice index of segmentation performance
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is 0.85, overall classification performance of masses as malignant or benign is 0.98
[13] on INbreast dataset.

In [38], CNN basedmammogram analysis is introduced to detect the risk of breast
cancer development. Craniocaudal and mediolateral oblique views, their mass and
microcalcification segmentations are applied to separate CNN models pre-trained
with ImageNet. Obtained features are used for training a final CNNmodel to predict
patient’s risk in terms of Breast Imaging-Reporting and Data System (BI-RADS)
score. INbreast and DDSM datasets are used for testing. It is reported that model
achieve AUC of 0.91 on INbreast dataset and 0.97 on DDSM for two-class (benign
or malignant) problems. Another transfer learning based method is utilized in [35]
to detect benign and malignant lesions. Pre-trained CNN features and analytical fea-
tures obtained from segmented tumors are classified with polynomial kernel SVMs
on dataset obtained from University of Chicago Medical Center. Voting mechanism
is applied for the final result. While AlexNet is used as pre-trained model, classifica-
tion abilities of the features obtained from AlexNet’s layers are compared. Features
are flattened and SVM classifier is applied for each layer of the AlexNet. Features
from the fourth convolutional layer provide the highest AUC = 0.83 and for the
overall performance, ensemble method provides better than the analytical approach
with 0.86 AUC [35]. Levy and Jain proposed CNN based technique to classify pre-
segmented breast masses in mammograms. Their technique includes transfer learn-
ing approach utilizing AlexNet and GoogLeNet, and pre-processing step providing
mass context and data augmentation. Three different CNN models are compared on
Digital Database for Screening Mammography (DDSM) dataset which is public and
provided by University of South Florida. The first CNN model is baseline model
similar to the early versions of AlexNet, the second and third models are AlexNet
and GoogLeNet. Convolutional weights of second and third models are initialized
with pre-trained model weights and fine-tuned with mammography images. Inputs
to these networks are obtained by pre-processing technique. Since area around the
mass is crucial, two different patches are obtained from the images. In the first patch,
inputs are regions with 50 pixels of fixed padding around the mass. In the second
patch, inputs are regions two times the size of the mass bounding box. Dataset is
augmented by applying transformations such as rotation, cropping, and mirroring.
According to the reported results, pre-processed and augmented GoogLeNet pro-
vides the highest accuracy 0.929 on the test set while pre-processed and augmented
baseline and AlexNet models provide 0.6 and 0.89, respectively [23].

Microcalcification plays important role in early breast cancer detection [11]. SAE
model is utilized to measure discrimination power of the microcalcification in breast
cancer detection and compared with other state of art machine learning approaches
such as LDA, KNN, and SVM. Three different experiments are tested to demonstrate
the importance of microcalcification. Dataset includes mammograms from 1204
female patients, 774 of them diagnosed with benign and 430 of them diagnosed with
malignant breast lesions, at the Sun Yat-sen University Cancer Center (Guangzhou,
China) and Nanhai Affiliated Hospital of Southern Medical University (Foshan,
China). In the first experiment, only extracted microcalcification data are used. In
the second experiment, only breast masses data are used and in the last experiment,
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breast masses data combinedwithmicrocalcification data are used. Suspicious breast
masses and microcalcification data are extracted by using image segmentation. Their
statistical and texture features are applied to classifiers. It is reported that the best
classification performance is achieved with SAE and while 0.87 AUC is obtained by
using only microcalcification data having 15 features, 0.61 AUC is obtained by using
only breast mass data having 26 features and combination of microcalcification and
breast mass data provides 0.9 AUC [11].

Unlike presented studies above, in [12] large scale machine learning approach
is applied to detect mammographic lesions and a convolutional neural network is
trained on a dataset including 45,000 images. Before training convolutional neural
network, candidate regions are detected with two-stage classification approach. At
the first step, first and second order Gaussian kernels are applied to extract five fea-
tures representing center of a focal mass, speculation patterns, the size of the optimal
response in scale-space. At the second step, random forest is applied to all pixels
representing estimated suspiciousness. All obtained optima in the likelihood image
by using non-maximum suppression are applied as inputs to the CNN. Data augmen-
tation is provided by performing translation and scaling. Trained CNN architecture is
similar toOxfordNet structure and comprised layers of 16, 32, 64, 128, 128with 3× 3
kernels with 2 × 2 max pooling operator. Convolutional layers are followed by two
fully connected layers with 300 neurons. Performance of the structure is compared
with a reference system based on candidate detector, contrast, texture, geometrical
and location features. Moreover, features obtained from CNN combined with each
feature used in reference system. According to the given results, while CNN trained
on augmented data provides 0.929AUC,CNNcombinedwith other features provides
0.941 AUC.

Deep learning structures provide better performances on large datasets, however
collecting annotated large dataset is a challenging problem in many areas. In [28],
crowdsourcing layer is added to convolutional neural network and named as AggNet.
The problem with the crowdsourcing is noisy annotations. Hence, in AggNet, data
aggregation ismade as a part of training phase.MultipleCNNs are trained ondifferent
image scales to detect mitosis. Obtained mitosis candidates are sent to crowds for
annotations. Annotated images are sent to CNNwith aggregation layer to correct the
model and generate a ground-truth data. CNN used in this study consists of three
convolutional layers and two fully connected layers. Aggregation layer includes
majority voting technique. After aggregation, sensitivity and specificity measures
are calculated and EM algorithm is utilized for training. Proposed structure is tested
on MICCAI-AMIDA13 challenge dataset and compared with augmented models. It
is reported that AggNet provides the highest AUC, which is 0.86. Moreover, AggNet
is trained on 8 random patients’ data and tested on 3 different patients and reported
F1 score is 0.7419. Another experiment is on whole AMIDA13 dataset and obtained
overall F1 score is recorded as 0.43.

Wang et al. won the competition launched at The International Symposium on
Biomedical Imaging (ISBI) to detect metastatic breast cancer. Challenge had both
whole slide image classification and tumor localization competitions onCamelyon16
dataset, and their AUC scores are 0.925 and 0.7051, respectively.While pathologist’s
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predictions have 0.966 and 0.733AUCscores, combination of pathologist predictions
and deep learning systems provides 0.995 AUC score for the classification.

Threshold-based segmentation deep learning system consists of preprocessing,
patch-based classification stage and heatmap-based classification stage. At the
patch-based classification stage, randomly extracted positive and negative regions
at different magnification levels are fed to GoogLeNet, AlexNet, VGG16, and
FaceNet. According to the reported results best performance 98.4% is obtained
from GoogLeNet at ×40 magnification level. On the other hand, tumor probability
heatmap obtained from GoogLeNet demonstrates that false positive samples cause
the majority of the error. Hence, more hard negative patches are sampled, and model
is retrained to eliminate this problem [30].

Generally, in the literature, breast cancer classification systems are designed to
separate benign andmalignant cases. In [31], class structure-based deep CSDCNN is
proposed to identify subordinate classes such as Ductal carcinoma, Fibroadenoma,
Lobular carcinoma, etc. CSDCNN includes input layer, convolutional layer, and
pooling layer. CSDCNN modifies the loss function by adding a constraint for fea-
ture space to preserve intra-class variance. CSDCNN is tested on BreaKHis dataset
including 7909 images representing eight sub-classes of breast cancers. Classifica-
tion performances of AlexNet, LeNet and CSDCNN are compared at image and
patient level. According to the reported results, CSDCNN with data augmentation
provides 93.9% for image level classification with 100× magnification factor and
94.7% for patient level classification with 200× magnification factor.

In [39], two different methods utilizing U-net are proposed to segment fibroglan-
dular tissue (FGT) MRI volumes. While first method (2C) segments breast in the
whole MRI, and FGT inside the segmented breast; second method (3C) segments
MRI volume into non-breast, FGT inside breast, and fat inside breast regions. Hence,
secondmethod provides two segmentation tasks simultaneously. Presented structures
are tested on 66MRI data with four different breast density levels and compared with
image processing techniques such as atlas and sheetness. According to the reported
results, best results are obtained for least dense breasts and while 2C provides 0.944
dice similarity coefficient, 3C provides 0.933 dice similarity coefficient.

In [10], an unsupervised method called CSAE is proposed to extract features
from unlabeled data for mammographic risk scoring which is calculated using fea-
tures extracted frommammograms. The method consists of two steps: breast density
segmentation and scoring. Themain idea behind themethod ismappingmultichannel
image patch with size (c, m, m) to a patch with size (C,M,M) having one channel per
label. Unlike direct mapping, in this method L layers are used for mapping inputs to
labels, called as feature encoding. Classifier part classifies last feature representation
into label space.

Another study utilizing CNN to detect invasive tumors on whole slide images,
includes tile tissue sampling, tile-preprocessing, and classification steps. Tile tissue
sampling is the process of extracting fixed size regions. Tile-preprocessing includes
color space conversion and color normalization. Classifier is trained on tile regions
annotated by pathologists. 3, 4, and 6 layered convolutional neural networks are
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evaluated, and 3-layer convolutional neural network provides the best AUC score,
which is 0.9018 [22].

3.2 Brain Tumor Segmentation and Alzheimer’s Disease

Brain tumor segmentation is one of the crucial tasks in medical diagnosis systems.
Therefore, brain imaging community provided many publicly available datasets and
different techniques are utilized to obtain accurate results. MICCAI 2008, Brain
TumorSegmentation (BRATS), IschemicStrokeLesionSegmentation (ISLES),Mild
Traumatic Brain Injury Outcome Prediction (mTOP), Multiple Sclerosis Segmenta-
tion (MSSEG), Neonatal Brain Segmentation (NeoBrainS12), and MR Brain Image
Segmentation (MRBrainS) datasets are some of the publicly available datasets. Gen-
erally, preprocessing steps such as spatial alignment, skull stripping, contrast correc-
tion, intensity normalization, and noise reduction are required to be able to analyze
the MR images. Patch-wise CNN, semantic-wise and cascaded CNN are some of the
modifications proposed on tradition CNN structures [32, 40]. In [20], 25 papers intro-
ducing deep learning methods and applications utilized to analyze the neuroimaging
correlates of psychiatric and neurological disorders are reviewed in detail.

In [41], fully convolutional neural network and conditional random fields are
combined to segment brain tumors. 2D images and image slices from axial, coronal,
and sagittal views are trainedwith fully convolutional neural network and conditional
randomfields as recurrent neural networks, respectively. Brain images are segmented
slice by slice via voting technique. Two different sized image patches obtained from
slices are applied to fully convolutional network to generate feature maps. Larger
inputs are transmitted over series of convolutional and pooling layers until they
reach the same size with small inputs. Then, both feature maps generated from small
and large inputs are applied to remain convolutional and pooling layers. After fully
convolutional network process, conditional randomfields using theweights of trained
fully convolutional network segments the image by minimizing the energy function.
At last, both parts are finetuned. Proposed technique is tested on Multimodal Brain
Tumor Image Segmentation Challenge (BRATS) 2013, BRATS 2015 and BRATS
2016. According to the results, 0.84 dice coefficient is obtained for BRATS 2015.

In [33], brain regions are segmented by applying Hough voting mechanism on
outputs of six different convolutional neural network structures. Both ultrasound and
MRI data are utilized to train structures. While MRI dataset has 55 subjects obtained
via 3D gradient echo imaging, ultrasound dataset consists of 162 volumes obtained
by several freehand 3D scans recorded through windowing on 34 subjects. 80 K and
400 K sized training sets are used for ultrasound and 114 ultrasound volumes are
used for testing. For MRI data, 10 volumes are used for testing. CNN is trained on 8
subjects, tested on 24 subjects and validated on 2 subjects. 2, 2.5, and 3-dimensional
data are trained separately. Hough-CNN method provides the best result (0.85 dice
coefficient) on ultrasound dataset. 7-5-3 CNN structure on 3D data provides the best
result (0.77 dice coefficient) on MRI data.
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In [29], deep CNN structure is utilized to obtain 3D feature representations of
MRI. One of the important properties of the study is that rather than using 2D
convolutional filters directly for 3D medical imaging modalities, high dimensional
features are concatenated as 3D features to eliminate overfitting problem. Study
consists of three steps: cerebral microbleed candidate localization accomplished by
analyzing the intensity distribution and thresholding, 3D feature representation with
CNN, classification with SVM. From 20 subjects 117 cerebral microbleeds are used
for training and testing. Reported test results demonstrates that while CNN and RF
based solutions provide 0.5405 and 0.5031 F1 measures respectively, 3D feature-
CNN provides 0.6891 F1 measure [29].

Multiple sclerosis (MS) is a complex pathology to be analyzed. Changes in brain
morphology and white matter lesions are important symptoms [8]. In [8], deep belief
network based model is proposed to detect changes in brain morphology and lesion
distribution. Model consists of three elements detecting morphological changes, dis-
covering spatial distribution of lesions, and joint model. The model is tested on a
dataset obtained from an MS clinical trial of 474 secondary progressive MS patients
and containing T1w, T2w, and PDw MRI data for each patient. Before processing,
rigid registration, brain extraction, intensity normalization and background cropping
are applied. Pearson correlation of the clinical MS Functional Composite and its ele-
ments with the distribution parameters and two established MS imaging biomarkers
are calculated to evaluate potential of the distribution parameters to find relevant
information.

Multi-modality may provide better diagnosis systems, however the main issue in
the multi-modality is incomplete data. In [5], convolutional neural network based
deep learning model for estimating the multi-modality imaging data is proposed.
The idea behind the model is to reveal the relationship between input modality
and output modality. First, intensity inhomogeneity correction, skull-stripping, and
cerebellum removing steps are applied on T1wMRI. MR images are segmented into
cerebrospinal fluid, white matter, and gray matter, and spatially normalized. PET
images are also aligned to the related MR images. Gaussian kernel is used to smooth
gray matter tissue density maps and PET images. Patches extracted from MRI and
PET are applied to 3D CNN architectures. There are two 3D CNN layers including
10 filters with 7 × 7 × 7 size and one feature map at the output layer. Model is
tested on ADNI database and while MRI images are inputs, PET images are outputs
of the model. 830 subjects from ADNI database are utilized for the evaluation and
432 of them does not have the PET images. 3D CNN model is compared with KNN
and Zero methods. According to the reported results, 3D CNN model outperformed
KNN and Zero methods on both training and test samples.

Alzheimer’s disease (AD) is a disease that decreases quality of life and is fre-
quently seen in society. Early diagnosis of AD is important to eliminate the brain
damage and depends on identifying risk of Mild Cognitive Impairment (MCI) pro-
gression. In [24], 3 layered stacked autoencoders and softmax layer are utilized to
classify AD. Greymatter volumes and CMRGIc patterns are extracted fromMRI and
PET, respectively. Features are selected by using Elastic Net and normalized to zero
mean and between 0 and 1. Method is evaluated on ADNI dataset including MRI
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of 311 subjects. According to the reported test results, for AD versus normal con-
trol (NC) classification problem, the method provides 87.76% accuracy while single
kernel SVM (SK-SVM) and multi kernel SVM (MK-SVM) provides 84.40% and
86.42%, respectively. For MCI versus NC, the method provides 76.92% accuracy,
SK-SVMandMK-SVMprovides 76.81%and77.25%, respectively. Themethodpro-
vides the best accuracy (47.42%) for 4-class problem. In [42], deep belief network
based classification approach is proposed to obtain hierarchical feature representa-
tions from 3D patches and design joint features from paired patches ofMRI and PET.
Anterior Commissure (AC)–Posterior Commissure (PC) correction, skull-stripping,
and cerebellum removal processes are applied to MRI data and then MRI data is
segmented to gray matter, white matter, and cerebrospinal fluid and spatially nor-
malized to be able to align with MNI coordinate space. Regional volumetric maps
are generated. Gaussian kernel is utilized to smooth gray matter density maps and
PET images. First, class discriminative patches are extracted from MRI and PET
images, and selected by using statistical significance test between classes. Patch
level feature learning is provided by stacked restricted Boltzmann machine (RBM).
For each obtained patch, a linear SVM classifier is built and its outputs are converted
to a probability via softmax function. Locally distributed patches are obtained by
constructing spatially distributed mega-patches generated in greedy manner. Mega-
patches are classified by classifiers constructed in greedy manner. At last, multiple
image level classifiers are built by fusing themega-patch classifiers. Fusing process is
provided by selecting optimal subset of mega-patches in greedy search strategy.Mul-
tiple classifiers select possibly a different subset ofmega-patches. Selected frequency
of mega-patches in each image-level classifier is counted, normalized and used as
weights of the respective mega-patches. Weighted combination of outputs of the
mega-patch classifiers provides the final decision. Approach is evaluated on ADNI
database baseline MRI and (FDG-PET) data obtained from 602 subjects. According
to the reported results, AD versus NC classification accuracy is maximally 95.35%,
MCI versus NC classification accuracy is 85.67%, and MCI converter versus MCI
nonconverter classification accuracy is 74.58% [42].

In [43], effectiveness of the different convolutional architectures such as stacked
2D patches, 2D patches, tri-planar, and 3D convolution are compared to segment
3D hippocampal patches for AD diagnosis. ADNI dataset is utilized for evaluations.
Best performances are obtained by using 3D convolution and tri-planar approach.

Another approach adopting CNN architecture, LeNet5, to distinguish healthy
brain and Alzheimer’s brain is trained and tested on fMRI data of ADNI database.
Before the classification, nonbrain tissues are removed from T1 images, motion
correction (MCFLRIT), skull stripping, and Gaussian kernel spatial smoothing are
applied as pre-processing steps. Obtained average classification performance is
96.8588% [4].

In [6], ensemble CNNs are proposed to classify healthy MRI and ADMRI. Three
CNNarchitectures including several convolution, pooling, transition layers and dense
block are utilized. Transition layer consists of batch normalization, 1 × 1 convolu-
tion, and 2 × 2 pooling layers. Dense block denotes combination of dense layers
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representing connectivity pattern between layers. These layers have small sized fil-
ters and each layer is connected to the other. This provides global feature map set.
Since the proposed model has 2D structure, 3D MRI data is converted to 2D images
by creating patches from axial, coronal, and sagittal planes. Obtained patches are
used as inputs. Output layer has four classes denoting non-demented, very mild,
mild, and moderate AD. Five different models and ensembled model are created and
compared with ResNet and Inception-v4. According to the reported results, ensem-
bled model provides 0.902 f1-score while Inception-v4 and ResNet provide 0.71 and
0.75 f1-scores, respectively.

3.3 Diabetic Retinopathy and Cataract

Cataract and diabetic retinopathy are two leading causes of blindness. Early diagno-
sis of them may eliminate vision degradation [15, 27]. Although automatic methods
exist in the literature, they have problems such as incomplete and redundant images,
noisy representation. In [27], severity of nuclear cataracts is automatically graded by
applying deep learning methods on slit-lamp images. Method consists of structure
detection, feature learning, and classification steps. In structure detection step, lens
is localized by detecting visual axis of the lens through edge detection and circle
fitting algorithms. Then, it is divided into three regions: anterior cortex, nucleus, and
posterior cortex. However, anterior cortex is removed from the set. Next step is resiz-
ing nucleus and posterior cortex regions. Resized nucleus region is also divided into
three half-overlapping regions and they are fed to the feature learning step. In fea-
ture learning step, unsupervised convolutional recursive neural network is utilized.
CNN filters are pretrained and fed into a CNN layer to obtain local representations
of each image, and multiple recurrent neural networks are utilized to learn hierar-
chical feature representations. First, randomly patches are generated, and k-means
clustering is applied to obtain a group of local filters. For each section in a category
of images one group of local filters is extracted. The last group of filters is learned
from all patches over all categories for the given category. Grading is achieved by
applying support vector regression on the filters obtained at the feature learning
step. Evaluation is done on ACHIKO-NC dataset including 5387 images with grad-
ing scores from 1 to 5. According to the given test results, the method provides
significant performance increase and mean absolute error is 0.304. In [44], diabetic
retinopathy severity is graded by using deep convolutional neural network. Inception-
v3 structure is trained on 128,175 macula-centered retinal fundus images. Multiple
binary classifications (moderate or worse diabetic retinopathy; severe or worse dia-
betic retinopathy; referable diabetic macular edema; fully gradable) are performed
on single network structure. According to the reported results 97.5% sensitivity is
obtained.

SqueezeNet based deep structure is trained for 2015 Diabetic Retinopathy Detec-
tion Kaggle Competition. Dataset is provided by EyePACS including 35,126 training
retinal fundus images and 53,576 test images. Images are graded using severity levels
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from 0 to 4. Obtained overall accuracy on test set is 83.6% and Quadratic Weighted
Kappa score is 0.76543 [15]. In [45], Messidor-2 dataset is utilized including 1748
images to improve Iowa detection programwithCNNdetectors.Device provides four
output types; negative, referable DR, vision-threatening, low exam quality. Accord-
ing to the reported results, device could predict referable DR with 96.8% sensitivity,
vision-threatening with 100%.

Retinal vessel segmentation is an important process for diagnosis systems. Hence,
automatic vessel segmentation has become important topic and many methods have
been proposed. DeepVessel is one of these studies utilizing convolutional neural
network with side output layer and conditional random field methods. Side output
layer provides better hierarchical representations while conditional random field
models the interaction between pixels. DeepVessel is built on holistically-nested edge
detection (HED) architecture andfine-tunedwithARIAandDRIVEdatasets.Method
is evaluated on publicly available DRIVE, STARE and CHASE_DB1 datasets and
0.9523, 0.9585, and 0.9489 accuracies are obtained, respectively [46]. In [47], deep
network structure is trained on up to 400,000 sample of examples. Six different
convolution architectures plain, with global contrast normalization, with zero-phase
whitening, with augmented, no-pool, and balanced are tested on DRIVE and STARE
datasets. The reported results show that balanced architecture provided the best AUC
results.

A CNN structure is trained on optical coherence tomography (OCT) images to
detect intraretinal fluid. Proposed structure is the modified version of U-net produc-
ing a binary segmentation map. 1289 OCT images are divided into train and cross
validation sets including 934 and 35 images, respectively.MaximumDice coefficient
obtained from cross validation is reported as 0.911 [34].

3.4 Cardiology

Heart health assessment requires automatic localization and tracking of the left ven-
tricle (LV). Deep learning based approaches have been introduced in the literature
to localize LV [48]. In [48], CNN is utilized to localize LV in cardiac MRI. Publicly
available dataset including 33 patients’ MRI provided by York University is used
for training and testing steps. During training step, 19 of them are used and each
slice is divided into positive and negative patches. While the positive patch is rep-
resented by the smallest bounding box enclosing the LV, 8 neighboring patches of
positive patch are used as negative patches and one more negative patch is selected
randomly. Totally, 30,000 patches are used for CNN training. Another issue for the
localization is variability in the heart size among the patients. Pyramid of Scales
Localization (PoS) is utilized during testing phase. Each input image is resized four
different scales. At each scale, pixel by pixel scanning is performed and probabil-
ity map representing the likelihood that a pixel in the image is the center of LV at
that scale. Probability maps are resized, and different selection policies based on the
pixel having the highest probability are applied to determine the scale. According to
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the reported results while single scale provides 96.5% accuracy, highest probability
over PoS, PoS average probability based selection policy, and PoS average proba-
bility and standard deviation based selection policy provides 98.65%, 98.64%, and
98.66% accuracies, respectively.

In [25], electrocardiogram (ECG) signals are classified by using stacked denoising
autoencoders (DAE) and softmax layer to label ECG beats. Weights of the structure
are updated by allowing expert interaction. Method consists of three steps: unsu-
pervised DAE training, fine tuning of DAE and softmax layer, and fine tuning by
expert. MIT-BIH arrhythmia database including 48 two-lead recordings, INCART
including 75 recordings, and SVDB including 78 two-lead recordings are used in
experiments. These datasets have four classes named as N, S, V, F and experiments
are employed as two binary classification problems (V vs. N, S, F (VEB) and S vs. N,
V, F (SVEB)). On MIT-BIH, accuracy results are 100 for SVEB and 99.8 for VEB.
On INCART database, 99.91 and 99.83 accuracies are obtained. On SVDB, 98.77
and 99.58 accuracies are obtained.

3.5 Lung Cancer Detection

Sensors have become frequently used devices in daily life with the improvements on
mobile healthcare systems. In [19], stacked autoencoder method is used for feature
extraction from Gas Chromatography Mass Spectrometer (GC-MS) data which rep-
resents human urine level to detect lung cancer. The system is trained on 57 patient’s
urine data and tested on 10 patient’s urine data. The highest accuracy obtained from
the system is 90%. Autoencoder is utilized as feature extractor in other applica-
tion classifying the lung nodules as malignant or benign. 4303 samples are used
from the National Cancer Institute (NCI) Lung Image Database Consortium (LIDC)
dataset. Binary decision tree is used for classification process and 75.01% accuracy
is obtained over 10 fold cross validation [49]. Data labelling is a challenging task
especially for medical images. In [26], convolutional autoencoder (CANN) structure
requiring small amount of labeled data is utilized for unlabeled feature learning. The
dataset consists of two types of data: labelled and unlabeled. While unlabeled data
is used at feature learning step, labeled data is utilized for fine-tuning and classifier
training. The raw CT images are divided into patches and used as inputs to CANN.
There exists three convolutional, three pooling layers and one fully connected layer
in the structure. CANN includes reconstruction step for the convolutional layer, con-
volutional conversion from feature map to output is named as convolutional decoder
and reconstruction is obtained by inverse convolutional operation named as convo-
lutional encoder. Training is accomplished through standard autoencoder training
approach. Proposed structure is trained and evaluated on 4500 patients’ lung CT and
95% accuracy is obtained.
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4 Conclusion and Future Works

Healthcare systems produce crucial and big data. Hence, techniques utilized to ana-
lyze these data should be accurate and efficient. Deep learning is the most applied
data analysis method with high representation and feature learning abilities. In this
chapter, the most popular and up-to-date deep learning solutions to biomedical prob-
lems are mentioned and analyzed according to problem characteristic, importance
of solution, requirements, and achievements. First, deep learning methods utilized in
healthcare systems are described. It is realized that convolutional neural network is
the most promising approach utilized in healthcare systems due to its feature extrac-
tion ability. Then, convolutional neural network based approaches are described.
Generally, the important challenge encountered in healthcare systems using deep
learning is lack of labelled data. Hence, autoencoders are frequently utilized to train
parameters of convolutional neural networks due to its unsupervised learning. After
describing structures, techniques used for increasing the efficiency of deep learning
approaches such as dropout, data augmentation, and finetuning are discussed briefly.
At the last part of that section, frequently used pre-trained models are described.
Third section of the chapter is devoted to the deep learning applications in healthcare
systems and their achievements. According to the reviewed studies, deep learning
techniques are efficient, and accurate enough to be used in healthcare systems.
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Deep Domain Adaptation for Regression

Ankita Singh and Shayok Chakraborty

Abstract Developing machine learning algorithms under the constraint of limited
labeled data has attracted significant attention in the research community in recent
years. Domain adaptation or transfer learning algorithms alleviate this challenge by
transferring relevant knowledge from a source domain to induce amodel for a related
target domain, where labeled data are scarce. Further, deep learning algorithms are
instrumental in learning informative feature representations from a given dataset and
have replaced the need for hand-crafted features. In this chapter, we propose a novel
framework,DeepDAR, for domain adaptation for regression applications, using deep
convolutional neural networks (CNNs). We formulate a loss function relevant to the
research task and exploit the gradient descent algorithm to optimize the loss and
train the deep CNN. To the best of our knowledge, domain adaptation for regression
applications using deep neural networks has not been explored in the literature. Our
extensive empirical studies on two popular regression applications (age estimation
and head pose estimation from images) depict the merit of our framework over
competing baselines.

Keywords Domain adaptation · Deep learning · Regression

1 Introduction

Modern era is witnessing an unprecedented increase in various forms of digital data
(such as images, videos, text etc.). Such data is highly unstructured, extremely diverse
in its contents and has a high redundancy (for instance, frames in a video stream).
Hand-labeling the data manually to learn a model necessitates significant human
labor and time. This has motivated the development of machine learning algorithms
under weak human supervision.

Domain Adaptation: Domain adaptation (DA) (or transfer learning) algorithms
address the problem of learning with weak supervision by utilizing abundant labeled
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data in one domain to develop a model for a related domain of interest, where there
is a paucity of labeled data [51]. The domain of interest is referred to as the target
domain and the other domain is called the source domain. For instance, consider the
problem of emotion recognition from facial images. Let us suppose we want to train
a model to recognize emotions on Asian faces (target domain); however, our training
data consists of images primarily from the Caucasian population (source domain),
with a few labeled images from the target Asian population. As another example,
consider the problem of human age estimation from facial images. Suppose, we have
a large amount of labeled training data for male subjects (source domain); however,
we are interested to develop a prediction model for female subjects, where labeled
data are scarce. In these applications, acquiring large amounts of labeled target data is
extremely challenging. Domain adaptation algorithms are immensely useful in such
situations as they transfer pertinent information from the source to the target domain,
to reduce the human annotation effort in learning a model in the target domain.

In a traditional supervised learning setting, we are given training samples X =
{x1, x2, . . . xn}, together with class labels Y = {y1, y2, . . . yn}, and the objective
is to learn P(Y |X) from the given training data. The unseen test data is assumed
to be derived from the same probability distribution as the training data; thus, a
model trained on the training data is assumed to generalize well on the test set. In
contrast, in domain adaptation, we are given data from a source domain DS and
a target domain DT ; the probability distributions generating the data in the two
domains are different, which implies a difference in their joint probability distri-
butions: Ps(X,Y ) �= PT (X,Y ) [10]. In a typical DA setup, the source domain is
assumed to contain plenty of labeled data. However, the target domain is assumed to
contain no labeled data (unsupervised DA) or few labeled samples (semi-supervised
DA). Since target domain samples are scarce, it is challenging to accurately compute
P̂T (X,Y ). The main objective of DA is to approximate the distribution P̂T (X,Y )

using information from the source domain, to develop an accurate prediction model
for the target domain. To this end, the source and target domains are assumed to be
correlated, where Ps(X) �= PT (X) but Ps(Y |X) ≈ PT (X |Y ); that is, the marginal
distributions of the source and target are different, but their conditional distributions
are the same [49]. Domain adaptation has found remarkable success in several com-
puter vision applications, such as facial expression recognition [82, 86], object recog-
nition [32, 62] and handwritten digits recognition [47, 63] among others. However,
most of these algorithms have focused on the classification problem; the regression
setting has received considerably less attention.

Deep Learning: In recent years, deep learning algorithms have depicted remark-
able performance in a variety of applications. One of the fundamental challenges
in computer vision is to extract a discriminating set of features from images and
videos. Vision researchers have conventionally used hand-crafted feature extraction
techniques, which are data-agnostic and task-agnostic. Common examples include:
(i) the Histogram of Oriented Gradients (HoG) [16], (ii) GIST features [48] and
(iii) the speeded up robust features (SURF) [5]. In contrast, deep learning algorithms
automatically learn the best set of features for a given dataset; the features learned are
task and data specific and thus depict much better performance than hand-engineered



www.manaraa.com

Deep Domain Adaptation for Regression 93

features. Convolutional Neural Networks (CNNs) are most commonly used in com-
puter vision research. A typical CNN contains the following types of layers: (i) input
layer to hold the raw values of the data; (ii) convolution layer to compute the output
of neurons using convolution filters over local regions within the input; (iii) ReLU
layer, which applies an element-wise activation function, such as the max(0, x),
thresholding at zero; (iv) pool layer to perform a down sampling operation along the
spatial dimensions; and (v) fully-connected layer to compute the class probabilities.
Through multiple layers of non-linearities, CNNs can extract highly discriminating
features for a given dataset. Common examples of CNN architectures include: (i) the
AlexNet , which contains 5 convolutional layers and 3 fully connected layers [36];
(ii) theGoogLeNet , which contains 22 layers andmuch lesser number of parameters
than the AlexNet [73]; and (iii) the ResNet , which contains 152 layers [31].

Deep learning has advanced the state-of-the-art on a variety of applications,
including image recognition [31, 36, 73], image segmentation [4, 14], text mining
[37, 84], and medical diagnosis [40, 43], among others. The unparalleled success of
deep learning hasmotivated vision researchers to exploit its capabilities to address the
challenging problem of domain adaptation. In conventional shallow transfer learning
approaches, the hand-crafted features are first extracted from the dataset, and then
a model is developed to align the source and the target domains, for the fixed set of
features [49, 71, 78]. In contrast, deep domain adaptation algorithms directly learn
transferable feature representations for the source and target data in question and
have depicted much improved empirical performance [24, 44, 77].

All the deep learning-based algorithms for domain adaptation have been devel-
oped for classification problems only; the regression setting has not been explored.
Motivated by their success in the classification setting, in this paper, we attempt
to address the problem of domain adaptation in the regression setting, using deep
neural networks. Our novel framework, Deep Domain Adaptation for Regression
(DeepDAR), is based on training the deep learning model to optimize a unique loss
function with the following components: (i) a supervised loss for the labeled source
data and labeled target data (if available), which ensures that the trained model is
consistent with the given labeled data; (ii) a loss based on Maximum Mean Dis-
crepancy (MMD), to minimize the probability distribution difference between the
source and target domains and learn transferable features accordingly; and (iii) a
semi-supervised loss for unlabeled target data, based on the Graph Laplacian, which
enforces the underlying model to smoothly fit the data. The framework is flexible
and can be easily adapted to both unsupervised and semi-supervised DA and for
multivariate regression, where more than one output variable needs to be predicted.
This research is the first of its kind in exploiting the feature learning capabilities of
deep convolutional neural networks (CNNs) to address the challenging problem of
domain adaptation for regression applications. Although validated on vision data in
this paper, DeepDAR is a generic framework to learn a discriminating set of features
to address the domain disparity in any regression setting.
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2 Related Work

In this section, we present a survey of related work. Since the primary focus of
this research is domain adaptation using deep learning, we organize this survey into
two parts. In the first part, we present literature on domain adaptation using deep
learning models. In the second part, we focus on existing work on domain adaptation
for regression applications.

Domain Adaptation using Deep Learning: Domain adaptation (DA) is a well-
studied problem in machine learning [51]. Before the advent of deep learning [36],
researchers primarily relied on hand-crafted features for DA [3, 10, 18, 22, 28,
50, 61]. DA techniques based on deep learning have outperformed their non-deep
counterparts due to the highly informative feature representations learned by the deep
models.

In the Deep Domain Confusion (DDC) algorithm proposed by Tzeng et al. [76],
domain invariant features were learnt in the fc8 layer using an AlexNet [36] model.
The disparity between the source and target domains was quantified using the Max-
imum Mean Discrepancy (MMD), which was appended as a term in the loss func-
tion used to train the network. Along similar lines, Tzeng et al. [74] augmented a
domain classification loss term with the MMD, to learn discriminative features for
the source and target data. Long et al. [44] proposed the Deep Adaptation Networks
(DAN)model where theMMD loss was applied in all the fully connected layers (fc6,
fc7 and fc8) of the AlexNet, with promising empirical performance. The Residual
Transfer Network (RTN) architecture, proposed by Long et al. [45], incorporated a
residual layer in the network and used MMD to address domain disparity. DA has
also been used to learn informative hash codes for the source and target data, while
addressing the probability distribution difference between them [77]. Other related
techniques include a residual parameter transfer framework for deep domain adap-
tation [60], studying domain shift in action videos [33] and a zero-shot framework
for deep DA [53]. Le et al. [38] recently conducted a rigorous theoretical analysis
of the discrepancy between the source and target domain data and its relation to the
reduction in classification errors. Multi-modal DA has also been explored using deep
neural networks [56].

TheGenerativeAdversarial Networks (GANs) proposed byGoodfellow et al. [27]
is one of the hallmarks of deep learning research. GANs are generative models capa-
ble of generating data (text, images, audio, etc.) according to a specified distribution
P(X). Several recent techniques apply adversarial training for domain adaptation [75].
The Domain Adversarial Neural Network (DANN) architecture, proposed by Ganin
et al. [24] incorporates a domain classifier, whose gradient is reversed when learning
the feature extractor weights. Liu and Tuzel [42] implemented a Coupled Generative
Adversarial Network (CoGAN) model, which shares weights at different layers of
the GAN to train a coupled network. Further, CoGAN has been combined with Vari-
ational Autoencoder (VAE) [35] to develop an image translation network [41]; the
network was utilized to convert target images to source images which could be clas-
sified efficiently using a source classifier. Data augmentation for DA was explored
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by Volpi et al. [79], where source data was augmented using a feature generator S,
which was used to learn domain invariant features through a minimax framework.
Concepts from Wasserstein GAN [2] have also been used for domain adaptation
[64]. The adversarial methods based on GANs depict commendable performance;
however, these networks cannot be fine-tuned and need to be trained from scratch,
necessitating large amounts of labeled data.

Domain Adaptation for Regression: Contrary to the classification setting,
domain adaptation in regression has receivedmuch less attention. A category of algo-
rithms has focused on importance weighting (estimating the weights of the training
samples to address the probability distribution difference between the source and the
target) for DA. Yamada et al. [81] proposed a semi-supervised DA framework for
structured regression where each training sample was assigned a weight based on its
similarity to the test samples in a high dimensional space. Garcke and Vanck [25]
proposed an algorithm for inductive transfer learning, where the importance weight
function was defined as:

w(x, y) = PT (x, y)

PS(x, y)
(1)

Using the function w(x,y), an appropriate weight was assigned to each source
sample so as to minimize the probability distribution difference between the source
and the target. Nearest neighbor-based importance weighting schemes have also
been devised for DA in regression. Guan et al. [29] introduced the k-NN based
weighting schemewhere the importance of each training samplewas computed based
on its distance to the k closest neighbors in the test set. The authors also proposed
a clustering based weighting strategy where the importance of each training data xi
was computed as [29]:

w(xitr ) = |Cluste(xitr )|
|Clustr (xitr )|

(2)

where w(xitr ) denotes the weightage of the training sample xitr and |Clustr (xitr )| and
|Cluste(xitr )| denote the number of training and test samples respectively, in the same
cluster as xitr . However, theweight computation ismostly based on heuristicmeasures
in most of these algorithms. Boosting based algorithms have also been explored
for domain adaptation in regression. Pardoe and Stone [52] introduced the boosted
transfer stacking and the two stage TrAdaboost.R2 algorithms, which are extensions
of their counterparts in the classification setting. Bhattarai et al. [7] proposed a
DA framework for age estimation, which learned a projection mapping, along with
a regressor in the projected space through a single framework. The problem was
posed as learning the projection matrix L and the regressor w jointly through a
single optimization framework, which was solved using stochastic gradient descent.
Cao et al. [11] proposed an adaptive transfer Gaussian Process (AT-GP) framework
for domain adaptation, which was based on the following two conditions: (i) the
shared knowledge between tasks should be transferable as much as possible; and
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(ii) negative transfer should be avoided when these tasks are unrelated. Cortes and
Mohri conducted an extensive analysis of the theoretical properties of DA algorithms
in the regression setting [15]. The Transfer Component Analysis (TCA) algorithm
[49], projects the source and target data onto a latent subspace such that the domain
disparity is minimized in the projected space; machine learning algorithms are then
trained on the new representations in the latent subspace.

As evident from this survey, all the DA algorithms for regression applications
work on hand-crafted features. Further, most of the algorithms work only in the
presence of labeled data in the target domain and are unable to utilize unlabeled
target data. In this paper, we introduce DeepDAR, a novel algorithm to address these
challenges. We exploit the power of deep CNNs to learn a discriminating feature
set for the domain adaptation task. Our framework can utilize unlabeled data in the
target domain and outperforms competing baselines on a variety of applications. Our
framework is detailed in the following section.

3 Proposed Framework

We are given data from two domains: source and target. Typically, the data in the
source domain are completely labeled: DS = {xi , yi }ns

i=1. In the target domain, a

small fraction of the data is labeled: DL
T = {x j , y j }n

L
T
j=1 and a major portion is

unlabeled: DU
T = {x j }n

U
T
j=1. For a regression application, the labels y are all real

numbers. As mentioned previously, the goal of domain adaptation is to induce a
learning model in the target domain by intelligently using both source and target
domain data, in the presence of a disparity between the two domains. Given the
labeled source DS, labeled target DL

T and unlabeled target DU
T as training data,

we train a deep neural network to predict unseen test data in the target domain.
Instead of using an off-the-shelf network trained on a different dataset, for a different
application, we propose to formulate a novel loss function specific to the application
in question and train the network to optimize that loss. Our network will then get
specifically tailored to our application and can potentially depict improved learning
performance. Our loss function consists of three components: (i) supervised loss on
the labeled data, which enforces the network to incur minimal prediction error on
the labeled source and target (if any) samples; (ii) an MMD loss between the source
and the target, which attempts to address the disparity between the two domains and
learn features accordingly; and (iii) a semi-supervised loss on the unlabeled target
data, which encourages the prediction function to smoothly fit the data. These are
detailed below.
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3.1 Supervised Loss on Labeled Data

The goal of the supervised loss term is to encourage the trained deep network to
furnish accurate predictions on the labeled data. In the regression setting, this is
quantified by the mean squared error (MSE) between the ground truth and predicted
labels. Let DL = DS ∪ DL

T = {x1, x2, . . . xl} be the labeled source and target data
(if available), with corresponding labels {y1, y2, . . . yl} The supervised loss on the
labeled data is computed as (in the absence of labeled target data, this term is com-
puted only on the source data):

LSup(D
L) = 1

l

l∑

i=1

(yi − ŷi )
2 (3)

where ŷi is the predicted output for yi .

3.2 MMD Loss Between Source and Target Data

The objective of this term is to quantify the distance between the source and target
distributions; minimizing this distance will reduce the domain disparity between the
source and the target. The concept of Maximum Mean Discrepancy (MMD) was
proposed by Borgwardt et al. [9] as a metric to compare distributions based on the
Reproducing Kernel Hilbert Space (RKHS) [67, 68]. Let A = {a1, a2, . . . an1} and
B = {b1, b2, . . . bn2} be random variables with distributions P and Q respectively.
The MMD between P and Q is empirically computed from the given samples as:

MMD(P, Q) = ‖ 1

n1

n1∑

i=1

∅(ai ) − 1

n2

n2∑

i=1

∅(bi )‖2H (4)

where H is a universal RKHS [69] and ϕ : X → H.
The MMD metric has been used to quantify the discrepancy between the source

and target domains in domain adaptation research [44, 77]. Given the source data
DS and the target data DT = DL

T ∪ DU
T , the MMD loss between the source and the

target is computed as follows:

LMMD(DS, DT ) = ‖E[ϕ(DS)] − E[ϕ(DT )]‖2H (5)

where E denotes the expectation function and ϕ : X → H is the kernel. We append
this as a term in our loss function; minimizing this term ensures that the feature
representations are learned in such a way that the difference between the source and
target probability distributions is minimized.
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3.3 Semi-supervised Loss for Unlabeled Target Data

While most DA algorithms for regression work only in the presence of labeled target
data, our method is capable of leveraging abundant unlabeled target training data
to induce a robust model. In a classification setting, the unlabeled data is usually
exploited through some uncertainty metric, such as Shannon’s entropy. The entropy
of each unlabeled sample is computed from the probability distribution of the network
outputs on that sample and the total entropy on the unlabeled set is included as a
term in the overall loss function [57, 58]. Minimizing this term ensures that the
network is trained such that it furnishes high confidence (low entropy) predictions
on the unlabeled set. However, computing the prediction uncertainty in a regression
application is a challenge, as entropydoes not have an exact analogue in the regression
setting.We therefore impose a conditionwhich ensures that the underlying prediction
function fits the labeled and unlabeled data smoothly and express this in terms of the
unlabeled target data.

We exploit ideas from graph transduction, which has shown remarkable success
in semi-supervised learning, to derive a semi-supervised loss term for the unlabeled
target data. As before, let DL = DS ∪ DL

T = {x1, x2, . . . xl} be the labeled source
and target data (if available), with corresponding labels {y1, y2, . . . yl}. Let DU

T =
{xl+1, . . . xn} be the unlabeled target data. Let f = [ f (x1), f (x2), . . . f (xn)] denote
the outputs of a regressor f (that we are trying to learn) on the labeled and unlabeled
data. Manifold regularization-based techniques attempt to construct a smoothness
term based on the intrinsic geometry of the data, which ensures that if two samples
xi and x j are close to each other, then f (xi ) should be similar to f (x j ) [12]. Each
sample xi is treated as a node in an undirected graph and the edge between samples
xi and x j is denoted by ei j . Let wi j be the weight of the edge ei j . A kernel function
is typically used to compute the weights: wi j = k(xi , x j ), with the Gaussian kernel
being a popular choice:

wi j = exp(
−||xi − x j ||2

2σ 2
) (6)

The edge weight matrix is given as W = {wi j }. D is a diagonal matrix given

by Dii =
n∑
j=1

Wi j . The graph Laplacian matrix is then computed as L = D − W

[12]. Using the Laplacian matrix, the smoothness of the prediction function f can be
computed in terms of a quadratic form of the Graph Laplacian [17, 85]:

f T L f = 1

2

∑

i, j

wi j ( f (i) − ( f ( j))2 (7)

Intuitively, Eq. (7) penalizes the difference between f (xi ) and f (x j ) more when
wi j is large; it thus enforces the smoothness assumption by encouraging strongly
connected vertices (with a large weight on the edge between them) to have similar
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values. The smaller the quadratic form inEq. (7), smoother is the prediction function f.
The smoothness constraint has been exploited in a variety of graph-based learning
problems [66, 85].We append this as a term in our loss function to leverage unlabeled
target data in training the deep neural network:

LSemi Sup(D
L , DU

T ) = f T L f = 1

2

∑

i, j

wi j ( f (i) − ( f ( j))2 (8)

The overall loss function is given as a weighted summation of the supervised,
MMD and semi-supervised loss terms:

Ltotal = LSup(D
L) + λ1LMMd(DS, DT ) + λ2LSemi Sup(D

L , DU
T ) (9)

whereλ1 andλ2 are the importanceweights. The networkwas trained using the back-
propagation algorithm, where the gradient of the objective was computed using the
differentiation methods available in Python.

4 Experiments and Results

In this section, we present an empirical analysis of our framework against relevant
baselines. We studied the effects of the size of the labeled source set, labeled target
set and kernel functions on the predictive performance. These are presented in the
following sections.

4.1 Datasets and Feature Extraction

We validated the performance of DeepDAR on two popular vision-based regression
applications—age estimation and head pose estimation from images. Both of these
are well-studied problems in the vision research community [8, 23, 26, 30]. Note that
our objective in this research was to study the performance of deep learning based
domain adaptation algorithms, and not to outperform the state-of-the-art error rates
on these datasets. We therefore used random subsets of images from each dataset
and did not replicate the exact train/test splits used in previous research, where the
objective was to achieve the lowest prediction error rates [19].

Age Estimation: The IMDB-WIKI dataset contains face images with gender and
age labels of celebrities from the IMDB and Wikipedia databases [59]. Figure 1
depicts sample images from IMDB-WIKI.

Head Pose Estimation: The Biwi Kinect Head Pose dataset contains pose images
of subjects recorded using a Kinect [20]. The ground truth for each image is provided
as the 3D location of the head and its yaw, pitch and roll angles. The Queen Mary
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Fig. 1 Sample images from the IMDB and Wiki datasets

Fig. 2 Sample images from the Biwi Kinect and QMUL datasets

University of London Multiview Face Dataset (QMUL) also consists of face images
of subjects exhibiting a wide range of poses [65]. We considered only the yaw angles
as the variable to be predicted in this work. Figure 2 depicts sample images from
these datasets.

Inspired by previous research on domain adaptation for regression applications,
we used the male and female subjects in each dataset to form the two domains [7,
29]. Further, for the IMDB and Wiki datasets, we also conducted a cross-dataset
experiment, where subjects in one dataset were taken as the source and those in the
other, as the target.

Feature Extraction: As mentioned previously, ours is the first framework to
address the problem of DA in regression using deep CNNs. The comparison base-
lines (detailed below) work only on hand-crafted features. For fair comparison, we
extracted deep features using the pre-trained VGG-F model [13] from each image
and passed them as inputs to the baseline methods.

4.2 Comparison Baselines

We used the following algorithms as comparison baselines in our work:
No Source: Here, the source data was not used at all. We merely trained a regres-

sion model on the labeled target data and predicted on the test data.
No DA: In this baseline, we used the source data without applying any domain

adaptation algorithm on it. A regression model was trained on the labeled source and
the labeled target and tested on the test set.

TCA: The Transfer Component Analysis algorithm proposed by Pan et al. [49],
which attempts to find a common latent representation for both the source and target
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data, that preserves the data configuration of the two domains after transformation;
machine learning algorithms are then trained on the new representations in the latent
subspace.

R2: The boosting based regression transfer learning algorithm, TrAdaBoost.R2
[52].

JL: The Joint Learning approach proposed by Bhattarai et al. [7], which uses
metric learning to learn a low dimensional projection (which aligns the features
from the source and target domains) along with a regressor in the projection space
to predict from the domain aligned features.

DITL: The Direct Inductive Transfer Learning method proposed by Garcke and
Vanck [25], which uses an importance weighting scheme to assign a weight to all
the source samples in order to train a regression model.

4.3 Deep Network Architecture

We used a neural network of 12 convolutional layers. The input images were scaled
to 128×128 and the pixels were normalized to remove any illumination effects and
for faster convergence [39]. The filter size in the convolutional layers was set to
the minimum size of 3×3 that retains the up, down, left, right and center notion in
images. Rectified linear unit (ReLU) was used as the activation function in all the
hidden layers. The weights were initialized with Xavier normal initializer while bias
was set to zero. Some of the convolutional layers were followed by max-pooling
layers to carry out the spatial pooling over a 2× 2 window with a stride of 2. In total,
7 max-pooling layers were used. The number of filters in the 12 convolutional hidden
layers varied from 32 to 512 in an incremental order of 2. The stack of convolutional
layers was followed by one fully connected hidden layer with 512 units and an output
sigmoid layer for predicting the continuous output value. The mini-batch size was
fixed to 16 samples. Each mini-batch consists of 8 samples from the labeled source
set, 2 from the labeled target set and 6 from the unlabeled target set. The network
was tested with the Adam, RMSProp and Adadelta optimizers with different datasets
and learning rates. RMSProp optimizer with a learning rate of 10−4 was found to be
the optimum for this study. For regularization, dropouts after 4 max-pooling layers
with a ratio of 0.25 was used. The network was trained for 50 epochs. The network
architecture is depicted in Fig. 3.

Label Normalization: Both the age estimation datasets (IMDB andWiki) as well
as the head pose estimation datasets (Biwi Kinect and QMUL) had a large spread in
the values of the output variables. The minimum value of age for the IMDB dataset,
for instance, is 6 years and the maximum value is 101 years. For the QMUL head
pose dataset, the minimum pose angle is 10° and the maximum is 180°. Such a wide
variation in the values of the target variable may produce error gradients of high
magnitude; this may result in drastic variations of the weight values from one epoch
to another, making the learning process unstable [1, 55]. As suggested by [55], we
scaled the output variables to the range [0–1] and used the scaled values in all our
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Fig. 3 Architecture of the deep network used in our study. Best viewed in color

Fig. 4 Plot of the training
and validation errors against
the number of epochs. The
IMDB dataset is taken as the
source and the Wiki dataset
as the target. Best viewed in
color

empirical studies. For consistency, the scaled label values were also used to train the
baseline methods.

Figure 4 depicts a sample plot of the training and validation errors against the
number of epochs, while training our deep neural network for the experiment where
the IMDB dataset is taken as the source and the Wiki dataset as the target. We note
a steady decline of the errors on both the training and validation sets, as the training
epochs increase. A similar plot was obtained while training our deep network for the
other datasets, which shows that our deep model is robust to overfitting issues.

4.4 Experimental Setup

In each experiment, we have a source set and a target set. The target set was divided
into three parts: a labeled training set, an unlabeled training set and a test set. The
number of images in each set, for each experiment are detailed in Table 1. In a real-
world application, the number of labeled target data is much less than the number of
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Table 1 Number of sources, labeled and unlabeled target and test samples for each dataset used in
our experiments. S: Number of source samples,LT: Number of labeled target samples,UT: Number
of unlabeled target samples, T: Number of test samples,M: Male subjects, F: Female subjects

Source Target S LT UT T

Wiki (F) Wiki (M) 9,605 3,500 8,000 4,500

Wiki (M) Wiki (F) 7,000 2,250 4,750 2,250

Wiki (M and F) IMDB (M and F) 38,104 10,000 25,000 15,000

IMDB (M and F) Wiki (M and F) 20,000 8,000 18,000 8,000

Biwi (F) Biwi (M) 3,447 1,000 2,500 2,131

Biwi (M) Biwi (F) 5,624 700 1,500 1,247

QMUL (F) QMUL (M) 1,505 896 1,349 1,215

QMUL (M) QMUL (F) 2,500 305 600 600

unlabeled target data, as the fundamental premise of DA is the paucity of labeled data
in the target domain. The sizes of the sets were selected to appropriately mimic this
real-world situation, as depicted in Table 1. The objective was to utilize the labeled
source data, labeled and unlabeled target training data to develop a model for the
target test data. The parameters λ1 and λ2 in Eq. (9) were both taken as 100 based
on preliminary studies. A gaussian kernel was used to compute the MMD in Eq. (5).

4.5 Performance Metrics

We used the mean squared error (MSE) and the mean absolute error (MAE) as
the performance metrics in our experiments, both of which are extensively used to
quantify the performance of regression algorithms.

4.6 Performance Analysis

The performance of the proposed method and the comparison baselines are reported
in Tables 2, 3, 4, 5, 6, 7, 8 and 9.

The TCA andR2methods depict poor performance onmost of the datasets. The JL
method depicts impressive performance on some of the datasets, but is not consistent
across datasets in its performance. The No Source method depicts the best perfor-
mance on 3 experiments (in terms of MSE), showing that training a model merely
on the target data can sometimes produce good performance. However, its perfor-
mance on the other experiments is much worse than the best performing method.
No DA produces the best performance on 2 experiments (in terms of MSE), show-
ing its usefulness in datasets where the disparity between the source and the target
domains is not very strong. But for most of the other datasets, it incurs much higher
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Table 2 MSE and MAE
analysis on the Wiki dataset

Method MSE MAE

No source 0.76 0.24

No DA 0.47 0.20

TCA 0.15 0.25

R2 0.90 1.2

JL 0.18 0.32

DITL 0.02 0.11

DeepDAR 0.02 0.10

Source Female subjects, Target: Male subjects. Best results are
shown in bold

Table 3 MSE and MAE
analysis on the Wiki dataset

Method MSE MAE

No source 0.02 0.11

No DA 0.02 0.12

TCA 1.26 1.45

R2 1.84 1.35

JL 0.14 0.35

DITL 0.02 0.13

DeepDAR 0.02 0.11

Source Male subjects, Target: Female subjects. Best results are
shown in bold

Table 4 MSE and MAE
analysis

Method MSE MAE

No source 0.01 0.10

No DA 0.01 0.10

TCA 0.76 0.25

R2 2.06 1.43

JL 0.43 0.20

DITL 0.02 0.11

DeepDAR 0.01 0.09

Source Wiki, Target: IMDB. Best results are shown in bold

errors compared to the best performing method. TheDITL algorithm depicts the best
performance among all the baselines considered. DeepDAR depicts the best perfor-
mance in 7 out of the 8 experiments in terms of MSE, and 6 out of the 8 experiments
in terms ofMAE. This consistent performance can be attributed to the discriminative
features learned by our method through our novel loss function (Eq. (9)); the fea-
tures learned by our network are thus specially tailored to the application in question,
which results in much improved performance across a variety of applications and



www.manaraa.com

Deep Domain Adaptation for Regression 105

Table 5 MSE and MAE
analysis

Method MSE MAE

No source 0.03 0.16

No DA 0.03 0.17

TCA 1.21 1.00

R2 1.88 1.36

JL 0.15 0.36

DITL 0.02 0.13

DeepDAR 0.02 0.11

Source IMDB, Target: Wiki. Best results are shown in bold

Table 6 MSE and MAE
analysis on the Biwi Kinect
dataset

Method MSE MAE

No source 0.03 0.13

No DA 0.03 0.17

TCA 0.74 0.24

R2 1.35 1.15

JL 0.04 0.15

DITL 0.02 0.11

DeepDAR 0.0004 0.002

Source Female subjects, Target: Male subjects. Best results are
shown in bold

Table 7 MSE and MAE
analysis on the Biwi Kinect
dataset

Method MSE MAE

No source 0.05 0.18

No DA 0.03 0.16

TCA 0.98 1.05

R2 1.22 1.51

JL 0.07 0.22

DITL 0.03 0.14

DeepDAR 0.0004 0.002

Source: Male subjects, Target: Female subjects. Best results are
shown in bold

experiments. The results strongly corroborate the promise and potential ofDeepDAR
for regression-based domain adaptation applications.
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Table 8 MSE and MAE
analysis on the QMUL dataset

Method MSE MAE

No source 0.21 0.46

No DA 0.43 0.66

TCA 0.29 0.11

R2 2.19 1.44

JL 0.30 0.44

DITL 0.09 0.24

DeepDAR 0.09 0.13

Source Female subjects, Target: Male subjects. Best results are
shown in bold

Table 9 MSE and MAE
analysis on the QMUL dataset

Method MSE MAE

No source 0.09 0.26

No DA 0.31 0.27

TCA 3.65 2.18

R2 0.34 0.50

JL 0.34 0.49

DITL 0.14 0.57

DeepDAR 0.17 0.42

Source Male subjects, Target: Female subjects. Best results are
shown in bold

4.7 Effect of Labeled Target Data

In this experiment, we study the effect of labeled target data on the predictive perfor-
mance. The results for the experiment where the male subjects in the Wiki dataset
are taken as the source and the female subjects as the target, are depicted in Figs. 5
and 6 respectively (we plot the results of only the four top performing algorithms
and the total error instead of the mean error, to better observe the pattern in the given
scale).

We conducted experiments with 100, 50, 25 and 12.5% of the labeled target
data; the percentages are with respect to the size of the original labeled target data
for this experiment, as depicted in Table 1. The errors show an increasing trend
with decreasing percentage of labeled target training data, which corroborates our
intuition. More importantly, we note that the proposed method, DeepDAR, depicts
the best performance consistently across all sizes of the labeled target data.
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Fig. 5 Study of labeled
target data: total squared
error results. Source Male
subjects in Wiki, Target:
Female subjects in Wiki.
Best viewed in color

Fig. 6 Study of labeled
target data: total absolute
error results. Source Male
subjects in Wiki, Target:
Female subjects in Wiki.
Best viewed in color

4.8 Effect of Labeled Source Data

The effect of labeled source data on learning performance is studied in this section.
Figures 7 and 8 respectively depict the results of the experiment where the male
subjects in Wiki are taken as the source and the female subjects in Wiki as the target
(as before, we plot the results of only the four top performing algorithms and the
total errors).

The No Source method uses only the labeled target samples to induce the model
and thus, its performance remains unchanged with decreasing percentage of labeled
source data. For the other methods, the error mostly shows an increasing pattern
with decreasing percentage of labeled source data. DeepDAR once again depicts
impressive performance across varied percentages of source samples. These results
show the robustness of our approach to varying sizes of the labeled source and target
training data.
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Fig. 7 Study of labeled
source data: total squared
error results. Source Male
subjects in Wiki, Target:
Female subjects in Wiki.
Best viewed in color

Fig. 8 Study of labeled
source data: total absolute
error results. Source Male
subjects in Wiki, Target:
Female subjects in Wiki.
Best viewed in color

4.9 Effect of Kernel Function

In this section, we study the effect of the kernel function used to compute the MMD-
based loss term in Eq. (5).

Figure 9 depicts the MSE and MAE results where the female subjects in QMUL
are taken as the source and the male subjects as the target (we drop the TCA and
R2 methods, as they depict high errors). DeepDAR, with both the Gaussian and
polynomial kernels, depicts the best performance among all the baselines. Analogous
results are shown in Fig. 10, where the IMDB dataset is taken as the source and the
Wiki as the target. As evident from the figure, the polynomial kernel depicts even
better performance than the Gaussian kernel in terms of both MSE andMAE for this
experiment. This shows the generalizability of our method across different kernel
functions.
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Fig. 9 Study of the Kernel
Function. Source Female
subjects in QMUL, Target:
Male subjects in QMUL.
Best viewed in color

Fig. 10 Study of the Kernel
Function. Source IMDB,
Target: Wiki. Best viewed in
color

4.10 Feature Analysis

In this section, we performed a comparative analysis of the features learned using the
proposed method DeepDAR against the deep features used for the baseline methods
[13]. Figure 11 depicts theA-distance between the source and target domains for the
two set of features, for two of our experiments (male subjects as source and female
subjects as target for the Wiki and Biwi Kinect datasets).

The A-distance between two domains is a measure of discrepancy between the
two domains [6]. It is approximated as 2(1−2 ∈), where ∈ is the generalization
error of a binary classifier trained to distinguish samples from the two domains. A
high value of the error (low value of A-distance) implies that a binary classifier is
unable to differentiate source and target samples; this means that the source and
the target features have been well-aligned, so as to make the two domains almost
indistinguishable.We used an SVM trained on aGaussian kernel to estimate∈ (about
8,000 samples were taken from the source and target domains in each experiment
and split equally into training and test sets). As evident from Fig. 11, the features
learned using DeepDAR produce a higher error or lower discrepancy between the
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Fig. 11 Feature Analysis
using A-distance. DeepDAR
produces lower domain
disparity between the source
and the target. The notation
A → B implies A is the
source domain and B is the
target domain. Best viewed
in color

source and the target, as compared to the deep features used for the baseline methods.
Thus, the features learned using our method can address the domain disparity much
better than features which are agnostic to the application. This shows the usefulness
of our algorithm to learn domain invariant features using deep neural networks.

5 Conclusion and Future Work

We introducedDeepDAR—anovel deep learning framework to address the challeng-
ing problem of domain adaptation for regression applications. We formulated a loss
function relevant to the domain adaptation problem and trained a deep convolutional
neural network by optimizing the loss. Contrary to most existing DA algorithms
for regression, DeepDAR can utilize the presence of unlabeled data in the target
domain in learning a discriminating set of features. To the best of our knowledge,
domain adaptation for regression using deep neural networks has not been explored
in the literature. We validated the performance of our framework on image-based
age estimation and head pose estimation. DeepDAR outperformed competing base-
lines in terms of the mean absolute and mean squared prediction errors and also the
A-distance, depicting the discrepancy between the two domains.

In our future research, we plan to study the performance of DeepDAR on other
regression applications. For instance, due to the unprecedented increase in the
popularity of online platforms such as YouTube, Facebook, Twitter, Flickr etc.,
image/video popularity prediction (where the goal is to predict the popularity score of
an image before it is uploaded online) has recently gained popularity in the research
community [34, 54, 72]. However, all the popularity prediction algorithms lever-
age data from a particular website and train a model for the same website; these
models fail to take advantage of the abundant data that is available in other photo-
sharing websites. For instance, the images and the corresponding popularity scores
from Instagram can be potentially useful in developing a better prediction model for
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Flickr. Domain adaptation can be used to reduce the domain disparity between the
two websites in order to address this challenge. The performance of DeepDAR on
this application will be explored in our future work.

We also plan to study the performance of our framework for multivariate regres-
sion applications (with more than one output variables). For instance, in the Biwi
Kinect head pose dataset, the ground truth pose values of each image are given as
a triplet of yaw, pitch and roll angles [21] (we have only considered the yaw in
this research). As another example, consider the problem of predicting human gait
kinematics from motion data [46, 83]. Such systems are useful to predict gait abnor-
malities associated with physical or neurological deficiencies (such as amputation
or stroke). The output prediction variables in such an application include right/left
knee flexion, right/left ankle flexion and other displacement and rotation parameters
associated with motion [83], which entails multivariate regression analysis. Further,
each individual has his/her unique gait pattern [70, 80], which necessitates domain
adaptation to develop user-specific predictionmodels, by transferring relevant knowl-
edge from the data of other users. We intend to enhance our DeepDAR framework
to predict multiple output variables and study its performance on these applications.
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Deep Learning-Based Pedestrian
Detection for Automated Driving:
Achievements and Future Challenges

Michelle Karg and Christian Scharfenberger

Abstract Deep learning is considered as a key technology for the development of
advanced driver assistance systems and future automated driving. Focus lies espe-
cially on the perception of the environment by camera, Radar, and Lidar sensors and
fusion concepts. Camera-based perception includes the detection of road users. High-
est detection performance is especially required for detecting vulnerable road users
such as pedestrians and bicycle drivers. Here, tremendous improvement in vision-
based object detection has been achieved within the past decade. Research on object
detection has been stimulated by public datasets. The results on public benchmarks
show the progress of pedestrian detectors from hand-crafted features, over part-based
models towards deep learning. The gap between human and machine performance
becomes smaller, leading to the questionwhether pedestrian detection is solvedwhen
the detection performance reaches human performance? As false detections can lead
to hazardous situations in traffic scenarios, the expectations on the performance of
artificial intelligence for advanced driver assistance systems and automated driving
often go beyond human performance. Challenges are precise localization, occlusion,
distant objects, and corner cases, where only little or no training data is available. To
foster research in this direction, a new comprehensive dataset for pedestrian detec-
tion at night has been released. This chapter first introduces vision-based perception
of road users as a safety-critical application with increasing demand on detection
performance. In the second part, it summarizes concepts for pedestrian detection,
including an overview on public datasets and evaluation metrics. The dependency
between task complexity and task performance is discussed. Based on this discussion,
challenges in pedestrian detection are identified and future directions are outlined.
Further improvements in performance can be achieved by including components such
as tracking, scene understanding, and sensor fusion. In conclusion, the application of
deep learning to advanced driver assistance systems and automated driving is driven
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by the goal of achieving safe maneuvering in any traffic scene, any weather condi-
tion, and under real-time constraints. This places high demands on the development
of deep network architectures.

Keywords CNN · Pedestrian detection · Advanced driver assistance systems ·
Automated driving

1 Introduction

Deep learning has become a key technology in computer vision since its introduc-
tion and has found many applications [1–7]. The development of deep learning can
be followed by the early works on Restricted Boltzmann Machines (RBM), Deep
BeliefNetworks (DBN), and supervised pre-training, overmore recentworks on deep
Convolutional Neural Networks (CNNs) for computer vision, and towards future
directions such as Differentiable Neural Computers (DNCs) [2, 3, 5, 7–16]. Deep
learning is based on the concept of neural networks and extends the design of tradi-
tional neural networks by representation learning, stochastic gradient descent, deep
architecture, computationally efficient nonlinearities, and the use of large datasets
and fast computing. Representation learning optimizes the feature representation
needed for classification by end-to-end learning; the feature representation and the
classification are learned by a common training without the need for hand-designed
features [2]. Increasing the depth of neural networks helps to model nonlinearities,
where deep networks canmodel complex functionswith less parameters than shallow
and broad networks [11, 17]. Stochastic gradient descent (SGD) enables training of
deep network architectures, where in each mini-batch the gradient is estimated and
the weights are updated. SGD supports the use of large training datasets, because the
dataset is split into mini-batches and gradients can be computed for the mini-batches
only. In combination with fast processing, e.g. use of GPUs, deep networks can be
trained on large datasets such as ImageNet leading to superior generalization perfor-
mance than achieved with many other techniques based on hand-designed features
and domain expertise [2, 5, 7, 18]. Inmany cases, rectified linear units or related units
are used as activation function achieving faster convergence of the training for deep
networks than the use of, e.g., the sigmoid function used for shallow networks in the
past [19]. In addition to the changes in the network design, the amount of data used
for training, validating, and testing deep networks has been increased, e.g., reaching
over a million samples in the ImageNet dataset [17]. Similarly, the amount of com-
puting resources required to run such highly-efficient deep networks has increased,
with the support of parallel computing playing a key role, e.g., by GPUs.

Deep learning helped to improve the detection and classification performance
in many domains in computer vision, and solved issues in areas where approaches
based on hand-crafted features provided only limited solutions [2, 5, 7, 18]. One such
important area is the development of advanced driver assistance systems and auto-
mated driving with steadily increasing requirements on the detection performance
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Fig. 1 Highly accurate sensor systems are important for developing automotive systems forwarning
the driver, planning emergency steering, or planning driving strategies

of sensor systems in complex and challenging scenarios. Focus lies especially on the
perception of the environment by cameras, Radar, or Lidar sensors. These sensors
have to—reliably and fast—extract the environment information in any scenario to
allow the vehicle to warn drivers against critical situations, to perform emergency
steering for preventing accidents autonomously, and to plan driving paths in the area
of automated driving as illustrated in Fig. 1. Given the high requirements towards
the detection performance of today’s and tomorrow’s sensor systems with focus on
computer vision and camera sensors, deep learning is considered as essential for
advanced driver assistance systems and automated driving.

Camera-based sensing for advanced driver assistance systems and automated driv-
ing includes the detection of road users. Highest detection performance is especially
required for detecting vulnerable road users such as pedestrians and bicycle drivers.
Here, tremendous improvement in vision-based object detection has been achieved
within the past ten years. Research on object detection has been stimulated by many
public datasets, such as the Caltech dataset [20, 21]. Benchmarks show the progress
of pedestrian detectors starting from hand-crafted features, over part-based models
towards deep learning. Recent benchmarks and comparisons ofCNN-based detection
approaches against human detection performance show a fast closing gap between
human and machine performance [5, 22–24]. This trend may raise the question
whether the detection of pedestrians and bicyclists can be considered as sufficiently
solved when the detection performance reaches human performance?

Asboth false positive and false negative detections can lead to hazardous situations
in traffic scenarios, the expectations on the performance of artificial intelligence for
advanced driver assistance systems and automated driving often go beyond human
performance. The expectations are even higherwhen including precise localization of
objects, occlusion, very small and distant objects, sudden appearance of pedestrians
such as playing children running onto the road surface and corner cases, where only
little or no training data is available [25–27]. Here, artificial intelligence for advanced
driver assistance systems can help the driver in critical situations by monitoring the
environment.
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This chapter aims to introduce vision-based detection of road users as a safety-
critical application. Here, the demand on the detection performance increases for an
increasing level of automatization. Therefore, the different automatization levels for
advanced driver assistance systems and autonomous driving are summarized. This
leads to the question of what has been achieved in the field of pedestrian detection
and what are future challenges to further improve the detection performance. As
pedestrian detection is closely related to vision-based object detection, deep learning-
based approaches for solving this task are summarized. Performance depends both
on the algorithmic solution and the task complexity. For this reason, the relationship
between task complexity and error rate is discussed, and factors that influence task
complexity are described. Considering pedestrian detection, several public datasets
have been released in the past. These datasets differ in task complexity, e.g., in size of
the dataset, variability of the environment (number of cities, countries), day or night
data, and granularity of annotation. Afterwards, evaluation metrics for pedestrian
detection are presented. The performance for pedestrian detection for commonly
used datasets are summarized and challenges for pedestrian detections are outlined.
While this chapter focuses on CNN-based single-frame pedestrian detection, further
improvement in detection performance can be achieved by including tracking, scene
understanding, and sensor fusion.

In a nutshell, the application of deep learning approaches to advanced driver
assistance systems and automated driving is driven by the goal of safe and reliable
maneuvering in any complex traffic scene and any weather condition under real-time
constraints, placing high demands on the development of deep network architectures.

2 Safety Relevance of Pedestrian Detection for Advanced
Driver Assistance Systems and Automated Driving

The discussion about passengers’ and road users’ safety and driving comfort started
almost right after the invention of the automobile by Carl Benz in 1886. The focus on
addressing safety aspects was merely on the passengers’ safety inside of a vehicle in
the past decades, and initiatedmany technical improvements and advances increasing
the road safety and driving comfort. Prominent examples include anti-lock systems
and airbags, greatly reducing fatalities by ensuring the steerability of vehicles in
critical situations or preventing serious injuries during accidents.

The early advantages in radar and camera-based driver assistance systems had
a positive impact on developing novel advanced comfort and safety functions and
improved road safety further.Many of these driver assistance functions had the task to
warn drivers on potentially dangerous traffic situations and to prevent collisions with
other road users such as vehicles while manually steering the car. The technologies
developed put a great emphasis on passengers’ safety within a vehicle and helped
reduce the number of fatalities significantly despite the increasing number of vehicles
on public roads.



www.manaraa.com

Deep Learning-Based Pedestrian Detection for Automated … 121

The upcoming new wave of advanced driver assistance systems and systems sup-
porting automated driving together with new regulations and legislations shifted the
focus of road safety into a new direction. While there was a strong focus on ensur-
ing passengers’ safety within the vehicle, emphasis is now put on better protecting
vulnerable road users such as pedestrians, bicyclists and motorbikes outside of the
vehicle. The introduction of different levels of automated driving by the National
Highway Traffic Safety Administration—the SAE levels 0–5—intensified this trend
further by moving the responsibility of safe driving and protecting vulnerable road
users in any situation from the driver to the vehicle with an increasing SAE level. The
following overview summarizes briefly the different levels of automated driving:

– Level 0:Thehumandriver controls and steers the entire vehicle.Assistance systems
may be available to warn drivers against critical situations.

– Level 1: The driver controls most of the vehicle functions, but the vehicle performs
specific functionality like automatically accelerating, deceleration, or steering.

– Level 2: Level 2 considers driver assistance systems that perform automatic steer-
ing, acceleration and deceleration using environment information. The driver can
have his hands off the steering wheel and foot off the pedal a certain time but must
be ready to take over control anytime.

– Level 3: Level 3 extends Level 2 by shifting safety-critical functions from the
driver to the vehicle under certain environment and traffic conditions. The driver
still has to be present and intervene but does not have to monitor the situation in
the same way as for previous levels.

– Level 4: Level 4 vehicles are meant to be largely automated. They can perform all
safety-critical driving functions and monitor all roadway conditions for an entire
trip. While the level of automation is high, it is still limited to the operational
design domain and does not cover each and every driving scenario.

– Level 5: This level expects the vehicle’s system performance to equal that of a
human driver in any environment and driving scenario, with no driver interventions
needed at all.

All levels of automation impose strong requirements towards the detection of
vulnerable road users. Here, reliable pedestrian detection became a crucial task for
advanced driver assistance systems and automated driving, starting with Level 0,
where safety functions can warn drivers in critical situations, and up to Level 5,
where no more driver control is needed in the vehicle.

Besides the increasing level of automation, the need for highly reliable pedestrian
detection is also visible in traffic accident reports, where many injuries to persons in
road traffic occur in collisions between vehicles and pedestrians. Here, the accident
report of 2017 [28] of the Federal Statistical Office of Germany is selected and the
related statistics are summarized.

More than two million accidents were reported in Germany in 2017, with injuries
to persons in 302,656 accidents [28]. Most injuries to persons happened in urban
areas as shown in Fig. 2, whereas the number of injuries on motorways is smaller
but with a slight increase in severity. Pedestrians and bicycle drivers were involved
in 111,715 cases, approximately one third of the cases. As such, reliable pedestrian
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Fig. 2 Accident report from 2017 of the Federal Statistical Office, Germany [28]

detection is of great importance to reduce the number of vehicle-pedestrian collisions
in urban traffic.

Reliable pedestrian detection is considered as a challenging task in computer
vision andmachine learning. Figure 3 shows a typical road scenario in an urban envi-
ronment and exhibits several challenges to pedestrian detection. Examples include
pedestrians in a crowd, pedestrians and children hidden behind parked vehicles or
covered by other pedestrians or items. Given the scenario outlined in Fig. 3, the most
important requirements towards pedestrian detection for assistance and self-driving
systems can be summarized as follows:

1. Reliable pedestrian detectionmust work at any lighting condition, including day-
and night-time, sunset, dawn and shallow sun.

2. Reliable pedestrian detection must work in the far and near surrounding of a
vehicle.

3. Pedestrian detection is robust against different sizes, poses, appearances and
views.

Fig. 3 Typical road scenario in an urban environment
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4. Robust detection can address challenging environment and weather conditions,
including light and heavy rain, snow, fog, sun, and a high dynamic in the ambient
illumination such cast shadows.

5. The detection works reliably in complex environment and traffic situations.
6. Pedestrians can be detected robustly even when they are covered by carried

objects, vehicles or other persons.
7. An approach to pedestrian detection can detect individual pedestrians in a crowd

and extract the most relevant and critical pedestrian that a vehicle may need to
brake for.

The basis for reliable detection is the extraction of environment and traffic-relevant
information from sensor data. Tomeet the requirements for robustly pedestrian detec-
tion, systems supporting assisted and automated driving combine and fuse input from
several sensors. Themost common setups process either individual or fused data from
Lidar, Radar, and camera sensors. Focusing on camera sensors, the first step includes
the detection of objects in single images. Object detection may include pedestrians,
vehicles, traffic lights and traffic signs among others. Since single frame detection
may be very sensitive to false positive or false negative being critical for safety-
relevant functions, post-processing such as tracking is often required to increase the
robustness of object detection by leveraging spatio-temporal information or input
from data sources such as Radar or Lidar for plausibility checks. Sensor data fusion
and post-processing can increase the overall detection accuracy by improving the
detection confidence through temporal, spatial and multimodal coherence, and by
correcting false detections through time series analysis. However, a high detection
accuracy of a single sensor in its working range is crucial to make sensor fusion
highly efficient. As such, this article focuses on the examination of the overall per-
formance of a single-sensor, single-frame approach for detecting pedestrians based
on convolutional neural networks (CNN).

3 Pedestrian Detection

Object detection includes both the classification of an object and its localization in an
image. Pedestrian detection can be considered as a special case of object detection,
where the classification reduces to a binary decision: ‘pedestrian’ or ‘background’.
The localization task distinguishes object detection from object classification. The
latter is based on image crops each containing an object, the former is based on images
that may include objects or background only. As object detection requires searching
for potential object candidates/object proposals in a complete image, it is computa-
tionally more expensive than object classification and more prone to the detection of
false positives. The separation in classification and object detection is visible in the
design of CNN architectures for both tasks. CNNs for object classification serve as
core networks in the larger CNN architectures for object detection.
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For this reason, this chapter starts with summarizing two common approaches
for CNN architectures for object detection. Then, a review follows on core networks
for feature extraction and classification. Since the detection performance of object
detectors highly relates to task complexity, factors influencing task complexity are
presented and discussed additionally. Afterwards, an overview of publicly available
datasets for research on pedestrian detection is provided, and evaluation metrics
for pedestrian detection are summarized. This chapter concludes with a discussion
on the performance of CNNs, open challenges for pedestrian detection, and future
directions.

3.1 Convolutional Neural Networks for Pedestrian Detection

The task of detecting objects can be broken down into several sub-tasks, including
object localization, object classification, and estimating a detection confidence. These
sub-tasks can be described as follows:

1. Localization of an object l(obj) = f(x, y, width, height): Where is the object
located in an image, and what is its size?

2. Classification of the object c(obj)= h(cj, x) given the observation x and c classes:
Which class is assigned to the object?

3. Estimation of the confidence z(obj) = P(cj | x): How confident is the detector in
its detection?

Pedestrian detection has been addressed in computer vision by different
approaches over time as illustrated in Fig. 4. As direct classification of pixel val-
ues is easily prone to errors, features based on edges or structures were introduced.
Histogram normalization increased the robustness of these features against noise,

Fig. 4 Object detection: from shallow architectures towards deep architectures learned end-to-end
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lighting, and spatial transformations [12]. The development of part-based models
improved the detection of objects further, considering difficult cases such as occlu-
sions, difficult poses, or rare viewing angles [29]. All approaches to pedestrian detec-
tion relied onwell-crafted, hand-designed features, and the performance of pedestrian
detection and classification depended strongly on an appropriate set of features cho-
sen.Anoverviewonhand-designed features especially suited for pedestrian detection
is provided in the work of Dollar et al. [21].

End-to-end learning of deep neural networks improved pedestrian detection fur-
ther, where a training approach based on stochastic gradient descent learns the fea-
ture representation and the classification jointly [26, 30]. This is also referred to as
representation learning. Representation learning based on convolutional neural net-
works (CNN) achieves higher performance and better generalization than designing
hand-crafted features for many object detection tasks and is, hence, applied to many
detection tasks in biomedical, robotic, and automotive applications.

Convolutional neural networks for object detection can be subdivided into two
main approaches (as shown in Fig. 5):

– Single-stage architectures, where multi-class classification and localization is
applied directly after feature extraction.

– Two-stage architectures consist of two network heads sharing the encoder: (1) a
region proposal network including binary classification and localization, and (2)
a classification network for multi-class classification.

Both architectures are based on an encoder,which consists of a set of convolutional
layers that computes the feature representation of an image and is learned end-to-end.
The feature representation includes low-level features such as gradients and corners,
mid-level features representing simple shapes such as lines, curves, and circles, and
high-level features representing object parts. Computing the feature representation

Fig. 5 Object detection: single-stage and two-stages approaches
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once for an entire image saves run-time [31]. Furthermore, the single and the two-
stage architectures have a set of predefined anchors in common specifying priors for
the aspect ratio and scale of the objects.

Single-stage architectures include architectures such as Yolo [32, 33] and SSD
[34]. After the convolutional layers for feature representation follow additional con-
volutional layers for multi-class classification and bounding box regression. Yolo
and SSD differ in their use of low-level features for classification and in their loss
functions. Yolo includes low-level features using a re-organization layer, while SSD
applies classification and bounding box regression to several feature resolutions.
Furthermore, the prediction of bounding boxes is constrained in Yolo using logistic
activations. The loss function of SSD is a weighted sum of the localization and the
confidence loss. Yolo additionally outputs separate confidence scores for each pre-
diction. The confidence scores are trained by using an additional loss component that
relates to the confidence prediction with the intersection-over-union (IoU) between
prediction and ground truth.

Two-stage architectures include architectures such as Fast R-CNN [31], Faster
R-CNN [3] and R-FCN [35]. These architectures include two neural network heads
after the encoder network: a region proposal network (RPN) and a classification
network.

The region proposal head consists of a binary classification (object vs. no object)
and bounding box regression. The RPN localizes potential object proposals (or also
called object candidates) and forwards proposals with a sufficiently high score to the
classification network. Non-maxima suppression (NMS) can be applied to reduce
the number of possible object proposals. Furthermore, a region-of-interest pool-
ing layer is required to transform each crop of an object proposal to a fixed size
[3, 31, 35].

The classification network can consist of a set of fully connected layers for the
Faster R-CNN [3, 31] or convolutional layers trained end-to-end for the R-FCN [35].

Following [4], single stage architectures have the advantage of faster computation,
whereas two-stage architectures can achieve higher accuracies. The differences in
the network design of the two architectures are visualized in Fig. 6a, b.

The detection performance depends on the chosen encoder for feature represen-
tation. Several basic network designs have been proposed as encoders:

– TheAlexNet has been introduced in 2012 and consists of five convolutional layers
and three fully connected layers [5]. The number of channels in each layer is
48-128-192-192-128 for the convolutional layers, and 2048-2048-1000 for the
fully connected layers. It has 60 million parameters and, to avoid overfitting, data
augmentation and drop-out are applied during training. The AlexNet achieved
an error rate lower than conventional classification approaches based on hand-
designed features on the ImageNet LSVRC-2010 contest.

– The VGGnet introduces the use of only small filter sizes, i.e., 3 × 3, for CNN-
based classification [6]. Network architectures of different depth ranging between
16 and 29 layers are compared in [6]. The number of channels is doubled after
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(a) Single stage architecture

(b) RPN and classification network

Fig. 6 Single stage architecture and two-stage architecture for object detection. The RPN of
the two-stage architecture is similar to the single-stage architecture; yet, the RPN classifies only
between background and object, whereas the output of the single-stage architecture is a multi-class
classification

max-pooling starting with 64 channels in the first layer and ending with 512 chan-
nels in the last layer. The three fully connected layers contain 4096-4096-1000
parameters. The number of parameters range between 133 million for the small
VGG-A network with 11 convolutional layers to 144 million for the large VGG-E
network with 19 convolutional layers. The additional depth of the VGG-22 (VGG-
E) network leads to 4.1% less top-1 error rate on the LSVRC dataset in comparison
to the VGG-14 (VGG-A) network.

– ResNets are based on stacking residual layers and are fully convolutional [7].
Residual layers facilitate the learning of deep networks by addressing the degra-
dation problem: the learned function is modeled as F(x) + x, with F(x) the resid-
ual and x the identity. The residual F(x) is learned in the ResNet. This residual
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mapping is represented by branched sub-network architectures. One branch is
a shortcut connection skipping layers in the sub-network to represent the iden-
tity x. The other branch is a set of layers for learning the residual F(x). Common
ResNet architectures include ResNet-18, ResNet-34, ResNet-50, ResNet-101, and
ResNet-152 [7]. In [36], up to 1000 layers are trained using a residual architecture
and stochastic depth during training to avoid vanishing gradients.

– Inception modules are introduced with the GoogleNet/InceptionNet-v1 [13].
An inception module consists of parallel branches with different filter size,
e.g., 1 × 1, 3 × 3 and 5 × 5. 1 × 1 filters are added to the network design
for dimensionality reduction. InceptionNet-v1 and InceptionNet-v3 are 22 layers
and 42 layers deep, respectively. InceptionNet-v3 comes with computation costs
that are 2.5 times higher than the costs of InceptionNet-v1 [13, 14]. InceptionNet-
v3 further replaces 5× 5 filters by two stacked 3× 3 convolutions to save runtime
[14]. These filters can be factorized into asymmetric convolutions (1 × n, n × 1),
and expanded filter bank outputs can be added to late layers. Training of incep-
tion networks can be accelerated by auxiliary classifiers or residual connections
[14, 15]. The combination of the two concepts for residual and inception layers is
investigated in [15].

Detection approaches based on convolutional neural networks have the poten-
tial to improve the performance of pedestrian detection in automotive significantly.
Applying detection in the automotive domain comes with many constraints and
requirements towards functionality and safety. These constrains impose important
design criteria to consider when designing convolutional neural networks for auto-
motive applications:

– Fast inference of the network is required to support integration in embedded
systems.

– Sensor systems for automotive applications require multi-class detection for
perception of the complete traffic scene. This includes other object classes such
vehicles, traffic signs, road construction objects, and road boundaries besides
pedestrians, bicyclists, and motorcyclists.

– Highly accurate localization of the objects and precise estimates of the object size
are required for traffic scene understanding and automated decision making.

– Meaningful confidence values for detections are relevant for safety-critical deci-
sion making in systems supporting advanced driver assistance and automated
driving.

– Furthermore, high precision and high robustness in terms of few false positives
and false negatives is required for safety-critical decision making.

Beyond those design criteria, such pedestrian detectors will run in highly com-
plex and dynamic environments and face the detection of safety-critical situations.
This raises additional demands and challenges on securing the performance of such
detectors learned end-to-end [37].
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3.2 The Dependence of the Error Rate on Task Complexity

The performance of an object detector depends on task complexity. With increasing
task complexity, low error rates are harder to achieve. Achieving low error rates is
important for safety-relevant applications in the automotive domain. An example for
the relationship between error rate and task complexity is provided by comparing
classification results for different public benchmarks first, followed by a description
of different aspects influencing task complexity.

Figure 7 shows an example of the relationship between error rate and task com-
plexity by comparing the classification error for different classification benchmarks.
The benchmarks considered include object classification for

– gray-scale images and digits only (MNIST dataset, 70,000 images) [38],
– street view house numbers (SVHN dataset, 600,000 images) [39]
– 10 or 100 categories including classes such as cars, airplanes, ships, animals
(CIFAR-10, CIFAR-100, each 60,000 images) [40]

– 1,000 categories (ImageNet, >1,000,000 images) [17]; here, the top-5 error rate is
reported besides the top-1 error rate because the classifier may correctly recognize
objects in the background of an image crop. For the top-5 error rate, it is sufficient
when the correct label is among the 5 highest scored predictions for an image.

Figure 7 shows the best results for CNN-based object classifiers for the different
datasets. Error rates below 1% can be achieved for the MNIST dataset. With increas-
ing task complexity, the demand on the representational power of the classifier, its
ability to converge during training, and on the size and quality of the training dataset
increases. Hence, achieving top-1 error rates below 1% becomes more challeng-
ing. For the ImageNet dataset, CNNs can achieve better performance than humans,
especially for classes such as breeds of dogs where human ratings depend on the
familiarity with dog breeds. Best performance is achieved for ensemble network

Fig. 7 Relationship between task complexity and classification error rate
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Fig. 8 Visualization of task complexity in a two-dimensional feature space

architectures. Ensemble network architectures consist of several networks, and e.g.,
majority voting can be used as final prediction.

Furthermore, the probability of a correct classification by chance decreases with
increasing number of classes. The probability of correct classification by change
is 10% for 10 categories, 1% for 100 categories, and 0.1% for 1,000 categories.
The kappa statistic normalizes the success rates by chance and provides a metric
how much a detector is better than ‘throwing a dice by chance’. The computed
kappa statistic of the MNIST dataset (κ = 99.4) is higher than kappa statistic of the
ImageNet dataset (κ = 80.6), indicating that the number of classes is not the only
property impacting task complexity.

Other important properties influencing task complexity are summarized in the
following and illustrated in Fig. 8:

– Number of classes: Task complexity increases with number of classes.
– Within- and between-class variability: Large between-class variability simpli-
fies task complexity by forming easily separable feature clusters with strong class
relationships. Large within-class variability can lead to overlapping feature clus-
ters that can make the learning of decision hyperplanes difficult and can increase
the task complexity.

– Level of class abstraction: The granularity of the class definition further influ-
ences task complexity. Examples related to pedestrian detection from low to high
level of abstraction are: (a) bounding box representation for pedestrian, (b) subdivi-
sion into elderly, adult and child, or (c) subdivision into groups such as policemen,
border officer, etc. Task complexity increases for subclass definitionswhere feature
spaces overlap and lead to confusions.

– Annotation ambiguity: Task complexity also depends on annotation ambiguity.
When detecting objects in images, the annotation of the objects is in most cases
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clear. Exceptions can occur for occlusions or objects with low resolution. Anno-
tating can become prone to ambiguity for other tasks such as gesture and action
recognition, intention recognition, and emotion recognition. For action recogni-
tion, the on-/offset of an action may be ambiguous [34]. For gesture recognition,
the interpretation of an action as a gesture may lead to ambiguity, e.g., a pedestrian
in the distance holding his arms up: Is a pedestrian waving or stretching his arm?
Deducing the intention from a gesture or action can become even more compli-
cated, e.g., a pedestrian waving in the distance: Is a pedestrian waving goodbye
to a friend or signaling to be recognized? When considering emotion recognition,
several approaches for defining emotions exist in literature, e.g., either categories
or dimensions [33]. Furthermore, emotions can blend, andmore than a single emo-
tion can be displayed. The possibility of annotation ambiguity can be ordered in
the following way after increasing risk of ambiguity: annotating objects, actions,
gestures, intentions, emotions.

– Variability of the environment/background: Introducing the background class
increases task complexity by two additional factors:

a. Complex background can lead to structures in the feature space that are similar
to objects and cause false positives. Prominent examples include structure of
branches and leaves of trees that are prone to false positives.

b. The amount of background informationusually predominates in natural scenes;
when scanning an image for objects, the large number of possible regions for
objects can lead to a risk of additional false positives in comparison to pure
object classification, where only pre-clipped image crops are used.

Beyond these properties related to task complexity, additional complexity relates
to the availability of training samples. Here, the feasibility of collecting, storing, and
annotating large image datasets is the dominating factor.

In addition, task complexity directly relates to learning decision hyperplanes.
The more difficult the task, the more complex the decision hyperplanes. When using
CNNs, the depth and the number of network parameters increase for more complex
decision hyperplanes. When considering the network depth, the vanishing gradi-
ent problem is a limiting factor and guides the design of the network architecture
[7, 13, 14].

Pedestrian detection is considered a highly complex task because of the large
variability of persons in their appearance and posture, and the complex and dynamic
background in natural scenes. The high variability results in a high within-class
variability and imposes challenges on training and learning decision hyperplanes.
Larger pedestrian datasets aim to address this issue by providing more variability
in their data, but task complexity for pedestrian detection increases further when
introducing

a. a high variety of different postures and appearances, including occlusions, groups
or crowds of people, and pedestrians carrying or pushing objects

b. high variety of different illuminations from data recorded at daytime, dawn, and
night
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c. many different background scenes by collecting data from different cities and
countries.

The next chapter provides an overview of public available research datasets for
pedestrian detection that address the challenges and aim to foster research in their
respective domains.

3.3 Overview on Public Research Datasets for Pedestrian
Detection

Early research datasets for pedestrian detection such as INRIA [12], ETH [41]
and TUD-Brussels [42] provide several thousand images collected at daytime with
no track identifiers to enable early research on pedestrian detection. The Daimler
dataset is a magnitude larger and can be extended by a set of stereo image pairs [43].
The images are gray-scale. The Caltech pedestrian dataset was published in 2009
and has been widely used for pedestrian research since then [20, 21]. It includes
249.884 images collected in the greater Los Angeles metropolitan area at daytime.
The dataset is split equally into images for training and testing, and track identifiers
are provided.

Further information on the pose of pedestrians is included in the datasets Kitti
[44], CityPersons [45], NightOwls [26], EuroCity [46] and nuScenes [47]. TheKitti
dataset includes 14.999 frames and is suited for multi-class detection and sensor
fusion for traffic scenes [44]. The annotations include pedestrians, cyclists and cars.
Additional input can be stereo, optical flow, and laser points. Recently, the nuScenes
dataset has been released, which is a large-scale multi-modal dataset and is inspired
by the Kitti dataset [47]. It includes recordings from the sensors Radar, Lidar, and 8
cameras, and provides a 360 degree field of view. The CityPersons dataset includes
8.475 of highly diverse images [45]. Even though the number of images is small
in comparison to larger datasets such as Caltech, NightOwls and EuroCity, high
complexity of the dataset is achieved by selecting very diverse scenes, images with
many pedestrians and groups, and good annotation quality. The EuroCity dataset
has been recently published and includes 47.337 images with 7.118 images collected
at nighttime [46]. The dataset was recorded in 31 cities of 12 European countries.

The NightOwls dataset is specifically designed for pedestrian detection at night-
time and includes the largest number of images collected at nighttime [26]. With
over 279.000 images, its size is comparable to the Caltech dataset (daytime only).
Due to larger variability in illumination and contrast, reduced color information, less
visibility of pedestrians at nighttime, and additional reflections and high dynamics
in the images, pedestrian detection at nighttime is more challenging than at daytime.
The data was collected in several European cities, and the annotations include the
additional attributes occlusion, difficulty, pose (back, front, left, right) as well as sep-
arate classes for pedestrian, cyclists and motorcyclists, and tracking identifiers. The
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KAIST dataset is designed for research on sensor fusion based on a color camera
and a thermal camera for pedestrian detection [48].

All the datasets differ in image resolution. The image resolution is 640 × 480
for Caltech and KAIST, 1392 × 512 for Kitti, 1024 × 640 for NightOwls, 1920
× 1024 for EuroCity, and 2048 × 1024 for CityPersons. Futhermore, the number
of pedestrian annotations is interesting besides the total number of images: 9 k for
Kitti, 31 k for CityPersons, 44 k (only nighttime) for NightOwls, 86 k (incl. 29 k
at nighttime) for KAIST, 215 k (incl. 35 k nighttime) for EuroCity, and 289 k for
Caltech. Most datasets include only daytime images. The NightOwls, EuroCity and
KAIST dataset include nighttime images. Figure 10 shows challenging examples
from the NightOwls dataset.

3.4 Evaluation Metrics for Pedestrian Detection

Pedestrian detectors are evaluated on a sufficiently large test dataset. Computing the
evaluation metrics requires counting the occurrence of false detections (FP = false
positives) and missing detections (FN = false negatives). Furthermore, the total
number of ground truth annotations equals the sum of true detections (TP = true
positives) and FN. The sum TP + FP equals all detections. Common measures for
evaluating the performance of pedestrian detectors include:

Precision = T P

T P + FP
(1)

Recall = T P

T P + FN
(2)

Missrate = FN

T P + FN
(3)

The overlap between the bounding boxes of the ground truth and the detection is
considered a TP, when their intersection-over-union (IoU) is larger than 50%. The
larger the threshold for the IoU, e.g., 75%, the better the overlap between ground
truth and detection:

I oU (GT, Detection) = AreaGT ∩ AreaDetection

AreaGT ∪ AreaDetection
(4)

Most commonly, the Average Precision (AP), the Precision-Recall curve, and
the Missrate-FPPI (false positives per image) curve are reported in the literature
as illustrated in Fig. 9. In the precision-recall curve, the Recall and the Precision
is plotted for different thresholds s, where the detection score is larger than s for
counting a detection as a TP. The AP is the area under the precision-recall curve.
The higher the area under the curve (black line in Fig. 9), the better the detector.
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Fig. 9 Example for the Precision-Recall curve and the Missrate-FPPI curve

The average AP for several classes is called the mean AP (mAP) for multi-class
classification. Results on the Missrate-FPPI curve are more intuitive to interpret in
comparison to the Precision-Recall curve. Here, the lower the curve (black line), the
better the detector.

Recently, the LRP (Localization Recall Precision) error has been proposed to
take the localization accuracy better into account when computing the AP and to
better distinguish between different detectors [49]. The LRP error compares the
performance of detectors on a more granular level as the AP. Reason for this is that
the common AP computation considers localization accuracy only indirectly (by the
IoU computation for the TP, FP, and FN). Yet, localization accuracy is an important
factor formany applications of object detection, including advanced driver assistance
systems and automated driving.

The LRP error is a normalized, weighted sum over an IoU error for the TPs
LRP IoU , a measure for the false positives LRPFP and a measure for the false
negatives LRPFN :

LRP(X, Ys) = 1

Z
(wIoU LRP IoU (X, Ys) + wFP LRPFP (X, Ys) + wFN LRPFN (X, Ys)

(5)

with the normalization Z = |T P| + |FP| + |FN | for the ground truth boxes X and
the detections YS with detection scores larger than a threshold s [49]. The weights
are wIoU = |T P|/1− τ , wFP = |Ys |, and wFP = |X |. τ is the threshold for the IoU.
The first component can be interpreted as a measure how close the bounding boxes
of the ground truth and the valid detections are [49]:

LRP IoU (X,YS) = 1

|T P|
NT P∑

i=1

(1 − I oU (Xi ,Yxi )) (6)

The second and third component are defined as [49]:
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LRPFP(X,Ys) = 1 − Precision (7)

LRPFN (X,Ys) = 1 − Recall (8)

The optimal LRP (oLRP) can be used similar as the AP for comparing the per-
formance of different detectors and is defined as [49]:

oLRP = mins L RP(X,Ys) (9)

In comparison to the AP metric, the oLRP provides an estimate for choosing the
optimal threshold s for the detection score, includes an error estimate on the tightness
of the bounding boxes between valid detections and ground truth, and can measure
differences in detector performance, that may be hidden in the computation of the
AP metric.

3.5 Discussion and Future Directions

Large improvement in pedestrian detection has been achieved over the last decade.
This progress can be followed by comparing the Missrate for pedestrian detection
over time.

Starting from a Missrate of 95% for the Viola and Jones algorithm (2004), and
68% for HOG-based classification (2005), the Missrate went down to 10% (2016)
for CNN-based approaches on the Caltech dataset (Missrates are reported at 10−1

FPPI) [21, 24]. An estimation of the human baseline, i.e. the performance of humans
correctly detecting pedestrians, for the Caltech dataset reports a Missrate of 6%
[22]. Missrates of Faster-RCNN, R-FCN, SSD, and YOLO on the EuroCity dataset
range between 8 and 10% for the deep network architectures [46]. Similar results are
achieved for the CityPersons dataset with a Missrate of 13% for Faster-RCNN [45].
As detection at night is more challenging than detection at daytime, the Missrate of
the NightOwls dataset for the Faster-RCNN is 19% [26].

Improvement in the extraction of informative features, learningmeaningful repre-
sentations, and granular classification helped achieving high detection rates for many
traffic scene scenarios. When considering single-frame and camera-only pedestrian
detection, the following challenges are future directions to further improve detection
quality in difficult scenarios:

1. Detection at Night: Detecting pedestrians at night is difficult for various reasons.
It is often hard to find appropriate camera settings for finding a balance between
long exposure times and image gain for increasing the sensitivity. This results
in sequences overlaid with motion blur or strong image noise. Furthermore, the
dynamic of images recorded at night may exceed the dynamic range of a camera
system. This leads to inhomogeneous illumination of the entire scene, including
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Fig. 10 Example images of the NightOwls dataset [26]

very dark and very bright areas illuminated by bright light sources or reflections.
Additionally, occlusion can not only be caused by objects in the scene, but also
by a lack of contrast for distinguishing people from the scene. The NightOwls
dataset has been created to provide a dataset similar in size to the Caltech dataset
for research on pedestrian detection at night [26]. Figure 10 shows challenging
examples from the NightOwls dataset.

2. Occlusion: The evaluations on the Caltech, CityPersons, EuroCity, and
NightOwls dataset are based on a reasonable subset of the annotations. Here,
the term reasonable subset refers to a minimum height of the pedestrians (50
pixels) and only little occlusion. The Missrate increases significantly when
including smaller or occluded pedestrians. The Missrate increases from 10 to
58% for the Faster R-CNN for the NightOwls dataset [26], and from 8 to 34% for
the EuroCity dataset [46]. Occlusion influences detection performance strongly.
Examples for occlusions are visualized in Fig. 11.

3. Distant Objects: Like occlusion, detection performance decreases significantly
for distant and, hence, small pedestrians. Figure 12 shows how the informative
content of the pixel representation decreases with resolution. For the NightOwls
dataset, the Missrate is 35% for distant pedestrians, 8% for medium-scale pedes-
trians and 2% for large pedestrians [26]. For the EuroCity dataset, the Missrate
increases from 8 to 17%when including small pedestrians in the evaluation [46].
Challenges for distant object detection are also reported for other objects such
as vehicles [25, 27, 50].
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Fig. 11 Examples of occlusion where large fractions of a pedestrian’s body is covered by other
objects or pedestrians

Fig. 12 Scale relates to the resolution of an object in the image. For small objects, the scale is low
resulting in less informative features

4. Localization:Highlyprecise localization is important for pedestriandetection for
advanced driver assistance systems and automated driving. Accurate localization
can become difficult for rare poses, for crowds, or for occluded pedestrians.

Besides these challenges, future research directions in the area of pedestrian detec-
tion are panoptic segmentation, pose estimation, and mesh reconstruction, extending
the scope of pedestrian detection which is based on bounding box representation
today [51–56]. In addition to information such as position, size, and speed of pedes-
trians, new attributes like actions, gestures, intention, and emotions are required to
further increase reliable detection and the detection performance for assisted and
automated driving. Developing approaches for detecting the shape, skeleton, and
motion besides bounding boxes representations for pedestrians can provide a mean-
ingful contribution to more reliable pedestrian detection, see Fig. 13.

4 Summary and Outlook

Reliable pedestrian detection in single camera images is a crucial task for all advanced
driver assistance systems and automated driving. The requirements towards pedes-
trian detection increase with increasing SAE level and come with very lowmiss rates
and failure rates. While this article focuses on detecting pedestrians in single camera
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Fig. 13 Bounding box representation, shape representation, and skeleton representation

images using convolutional neural networks only, a variety of additional approaches
can further increase the robustness of pedestrian detection in general.

Tracking pedestrians across several images can, when combined with road detec-
tion in general, significantly decrease the number of false positive and false negative
detections and, hence, the miss and failure rates. Deep learning can be applied to
tracking and several approaches have been proposed to solve tracking by CNNs
[57–62]. The CNN learns appearance features of an object and localizes similar
patches in the next frames, e.g., at 100 fps in [57], by estimating probability distri-
butions in [58], by using a fully-convolutional Siamese network in [59], by learning
domain-specific network branches which relate to training sequences in [60], and by
combining weak trackers based on convolutional features with an online decision-
theoretical Hedge algorithm to a strong tracker in [61].

Further information about the free space in a traffic situation or semantic segmen-
tation can help to better distinguish between static and dynamic objects. Information
about dynamic objects supports the identification of relevant pedestrians in crowds,
potentially approaching the road and imposing a risk for collisions and accidents.
Semantic segmentation is based on combining a convolutional networkwith a decon-
volutional network [62–65]. Early works on the application of CNNs to semantic
segmentation include [62, 63]. Semantic segmentation distinguishes between object
classes, but not between instances. Instance segmentation segments the border of
individual instances of cars or pedestrians [65]. Panoptic segmentation includes both
segmentation of all objects in the image and instances for selected object classes
[51, 52]. A review on semantic segmentation based on CNNs can be found in [65].

Additional sensors are required for reliably detecting pedestrians and vulnerable
road users with increasing level of automation. Here, stereo cameras can provide
depth information to better extract pedestrians from scattered background, or sur-
round view camera systems that provide a holistic, 360° field of view around the
vehicle. Radar and Lidar sensors can provide redundant data and can verify the
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detection of camera sensors to make pedestrian detection plausible. Deep learning
approaches that can directly work on 3D data, collected with Lidar or Radar sen-
sors, include VoxNet [66] and PointNet [67]. VoxNet is based on 3D CNNs and the
network architecture consists of an occupancy grid as input, a set of convolutional
layers for feature extraction, and fully connected layers for the final classification
[66]. PointNet does not require voxelization and directly operates on raw point cloud
data [67]. The classification network of PointNet contains two multi-layer percep-
tron layers within the feature computation and another one at the end of the network
architecture for final classification [67].

When considering automated driving, initial approaches have been proposed that
learn the driving behavior from sensor data only [68–75]. An example is PilotNet,
which predicts the steering angle from camera data [68, 69]. The CNN architecture
consists of five convolutional layers and three fully connected layers and imitates
human driving. The decision of the network is based on observing both obvious
features such as lane markings or other vehicles and subtle features such as bushes
lining the edge of the road [69]. Long short-term memories (LSTM) can be included
in the network design to model temporal dependencies for predicting the steering
angle [70, 74, 75]. Conditional imitation learning is applied in [71] to overcome the
limitations of [68–70], that the decision on where to drive is only based on sensor
input. Conditional imitation learning can combine both navigational commands and
imitating driving behavior based on camera input [71]. This is of advantage for taking
decisions, e.g., at road junctions. This can be extended to generative adversarial
imitation learning [73].

When considering partly or fully automated vehicle functions that can plan and
execute specific driving operations such as stopping on crosswalks to let road users
pass by, vehicle to pedestrian communication may be essential as well to confirm
the road user that the vehicle has understood the situation and the street is safe to
cross. For such applications, deep learning can play an additional role to support the
interaction between humans and automated systems in the traffic. Applications in
this field include observation and understanding of human behavior of humans inside
the car, outside the car, and in the surrounding vehicles [76]. Examples are driver
drowsiness detection, detection of driver’s hand gestures, and activity recognition of
pedestrians and bicycle drivers in the traffic [76, 77].

All these items, starting from single frame detection, over multi-sensor based
detection approaches, and towards vehicle to pedestrian communication can build
a highly reliable system for robust pedestrian detection at all levels of advanced
driver assistance systems and automated driving. Deep learning plays a key role in
the development of intelligent systems for observing the environment, fusing sensor
data, and supporting decision making [2, 10, 16, 78–80]. The use of deep learning
for safe and highly accurate pedestrian detection in traffic scenes is one of many
applications of deep learning in the field of advanced driver assistance systems and
automated driving.
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Deep Learning in Speaker Recognition

Omid Ghahabi, Pooyan Safari and Javier Hernando

Abstract It is supposed in Speaker Recognition (SR) that everyone has a unique
voice which could be used as an identity rather than or in addition to other identities
such as fingerprint, face, or iris. Even though steps have been taken long ago to
apply neural networks in SR, recent advances in computing hardware, new deep
learning (DL) architectures and training methods, and access to a large amount of
training data have inspired the research community to make use of DL as in a large
variety of other signal processing applications. In this chapter, the traditional principle
techniques in SR are first briefly reviewed and the potential signal processing aspects
of these techniques which can be improved by DL are addressed. Then the recent
most successful DL architectures used in SR are introduced and some illustrative
experiments from the authors are included.

Keywords Speaker recognition · Deep learning · Speaker verification · Speaker
embedding · Deep neural network

1 Introduction

Speaker Recognition (SR) is the task of automatically recognizing the speaker of
an utterance either in an identification or verification fashion. All the recognition
process is only based on the speech signals captured from the speakers. In other
words, it is supposed that everyone has a unique voice which could be used as an
identity. Although the research steps to use neural networks in SR have been taken
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long ago (e.g., [1–13]), recent advances in computing hardware, new Deep Learning
(DL) architectures, and access to a large amount of training data have encouraged
the research community to use DL again.

DL strategies can be used in the frontend of a SR system. A possible use is
in the state-of-the-art i-vector [14]–a compact representation of characteristics of
a speech signal which is widely used in not only SR but also in other recognition
tasks like speech, language, and emotion. Deep Neural Networks (DNNs) have been
used in the i-vector extraction algorithm for two main purposes. Firstly, a DNN is
used as an acoustic model rather than the typical Gaussian Mixture Model (GMM)
[15–19]. Secondly, traditional spectral features are substituted or concatenated with
the so-called bottleneck features [18, 20]. A notable accuracy gain can be obtained
in both cases but it is reported that the use of a Gaussian acoustic model trained on
the concatenation of bottleneck and spectral features leads usually to higher quality
i-vectors [18, 20].However, themain drawbacks are the increase of the computational
cost for i-vector extraction and the requirement of phonetic labels for DL acoustic
modeling.

Another possible use of DL in the frontend is to represent the speaker characteris-
tics of a speech signal with a single low dimensional vector using a DL architecture,
rather than the traditional i-vector algorithm. These vectors are often referred to as
speaker embeddings. In this chapter, we divide them into two main groups of super-
vised and unsupervised speaker embeddings. The first group is the case for which
the DL architecture is usually trained given the speaker-labeled background data.
Typically, the inputs of the neural network are a sequence of feature vectors and the
outputs are speaker classes. Different architectures, activation functions, and train-
ing procedures have been proposed (e.g., [21–24]). The experimental results have
shown that, in most cases, the bigger improvements are obtained on the shorter sig-
nals compared to the traditional i-vectors [23, 24], which implies that DL technology
can model the speaker characteristics of a short-duration speech signal better than
the traditional signal processing techniques. This is important for real-world appli-
cations where the decision should be made in very few seconds, provided that the
computational cost is still reasonable. It is recently shown that data augmentation can
notably improve the performance of speaker embeddings andmake them competitive
with traditional i-vectors even for long-duration speech segments [25]. Nevertheless,
the need of speaker labels for training the network is one of the disadvantages of
these techniques. Moreover, speaker embeddings extracted from hidden layer out-
puts are not so compatible with Probabilistic Linear Discriminant Analysis (PLDA)
[26], the most effective backend in SR, because the posterior distribution of hidden
layer outputs are usually not truly Gaussian. The background data in the second
group is free of any kind of labels, which can be considered one of the advantages
of these techniques. The unsupervised techniques used for this purpose try usually
to reconstruct the input and to minimize the reconstruction error or the cross entropy
during the training process. Typically, a kind of adaptation to the speaker data of
each utterance is performed in these techniques. For instance, in [27, 28] Maximum
a Posteriori (MAP) adapted GMM supervectors are given to the network as input
vectors and in [29], the parameters of a universal network are adapted to the input
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sequence of feature vectors of each speaker. As for supervised speaker embeddings,
these vectors suffers also from incompatibility with PLDA backend. The authors
have tried to solve this problem by introducing a variant of Rectified Linear Unit
(ReLU) referred to as Variable ReLU (VReLU) [28].

One of the most effective backend techniques for i-vectors is PLDA [26, 30],
which performs the scoring along with the session variability compensation. Usu-
ally, a large number of different speakers with several speech samples each are
necessary for PLDA to work efficiently. Access to the speaker labeled data is costly
and in some cases almost impossible. Moreover, the amount of performance gain,
in terms of accuracy, for short utterances is not as much as that for long utterances.
These facts motivated the research community to look for DL based alternative back-
ends to PLDA. Several techniques have been proposed. Most of these approaches
use the speaker labels of the background data for training, as in PLDA, and mostly
with no significant gain compared to PLDA. For example, different combinations of
Restricted Boltzmann Machines (RBMs) have been proposed in [31, 32] to classify
i-vectors and in [96] to learn speaker and channel factor subspaces in a PLDA simu-
lation. RBMs in [33] and DNNs in [34] are used to increase the discrimination power
of i-vectors given speaker-labeled background data. A nonlinear PLDA is simulated
in [35] using a tied variational autoencoder architecture. In [36, 37], a combination
of RBM, autoencoder, and PLDA is proposed for speaker and channel variability
compensation, which shows some improvements compared to using only PLDA.

Recently, a SR challenge was organized by the National Institute of Standard and
Technology (NIST) [38] to address how a comparable performance with PLDA can
be achieved when the development data is not labeled. Although the use of unsuper-
vised automatic labeling algorithms were proposed by some participating teams [39,
40], those algorithms cannot correctly estimate all the labels. Additionally, it is sup-
posed that several samples are available for each speaker in the background data
which could not be true in reality. The authors proposed a hybrid Deep Belief Net-
work (DBN)-DNN architecture in [41–43] to address this problem, filling the perfor-
mance gap between cosine and PLDA scoring when no speaker-labeled development
data is available. The proposed architecture is initialized with speaker-specific pa-
rameters and tries to discriminate between target and selected non-target, known
also as impostor, speakers in the i-vector space. The experiments on the challenge
database showed the excellent results of the proposed architecture alone and by the
combination with unsupervised automatic labeling techniques.

A natural choice for DL is to train an end-to-end SR system, capable of doing
multiple stages of data processing with a unified network. End-to-end architectures
were successfully applied inmany other tasks such as [44, 45]. In SR, there have been
several attempts to build suchmodels as e.g., proposed in [46], where speaker models
take speaker spectral features as input and output the similarity scores. However,
these architectures are not yet so competitive with the methods based on vector
representation of speakers.

The rest of the chapter is organized as follows. Section2 reviews briefly the con-
ventional techniques used in a typical state-of-the-art speaker recognition system
from feature extraction to classification and scoring. Section 3 describes how DL
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has been used in a frontend of a SR system. It will mainly talk about the use of DL
technology in i-vector extraction, supervised and unsupervised speaker embeddings
and will summarize the works of the authors proposed in [28, 29]. Section4 sum-
marizes the recent research works on the use of DL as a backend in a SR system and
then will mainly describe briefly the work of the authors presented in [43]. Section 5
describes how both frontend and backend could be performed at once with a DL
architecture, i.e., giving the output scores given the input feature vectors. Finally,
Sect. 6 summarizes the conclusions and gives some hints for the future work.

2 Conventional Techniques

Recognizing the identity of individuals only by their voice, known as SR, dates back
around five decades. Usually, the speech acoustic features are used to discriminate
between different speakers. Acoustic features reflect both physical, e.g., the size and
the shape of the throat and mouth, and behavioral characteristics, like the voice pitch
and the speaking style, of an individual. Two main branches are usually considered
for speaker recognition, namely identification and verification. Speaker identification
can be seen as amulti-class classification taskwhere a test utterance has to be assigned
necessarily to one of the enrolled speakers (closed-set) or could be identified also as
an unknown speaker (open-set). An open-set speaker identification task is usually
more difficult since a robust decision threshold should be defined as well. Speaker
Verification (SV), on the other hand, can be seen as a two-class classification task
where a claimed identity from an unknown speaker should be verified by the system
whether the unknown speaker own the claimed identity. SR can be text-dependent
or text-independent. The text-dependent SV requires the speaker saying exactly a
given text, password, or sequence of numbers, whereas the text-independent SV is
based on free speech. In principle, the text-dependent task is more accurate and
needs less amount of training and testing data compared to the text-independent one.
However, the text-independent speaker verification is more convenient for users as
they can speak freely. Moreover, in some applications only the text-independent task
is applicable. In this chapter, we mainly focus on the text-independent SV task.

As it is shown in Fig. 1, SV involves two main stages: the training phase in which
the target speakers are enrolled and the testing phase in which the claimed identity
of the unknown speaker is verified. It is possible to model the speakers either in a
generative way such as GMM [47] which estimates the distribution of feature vectors
within each speaker, or in a discriminative fashion such as Support Vector Machine
(SVM) [48] andDNNwhichmodel the boundary between speakers. In the following,
we summarize the main parts of a state-of-the-art SV system.
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Fig. 1 Block diagram representation of a basic SV system

2.1 Feature Extraction

Feature extraction is usually one of the primary steps in any kind of pattern recogni-
tion system. It is the process of extracting meaningful features from the raw data. In
speech processing, features vectors obtained from a speech signal contain usually the
acoustic characteristics, speaker, and language information. Depending on the appli-
cation and the task, the recognition system will focus only on the target information,
which is speaker in this case. One of the standard features in SR is a set of short-
term acoustic features obtained from the speech spectrum. The spectrum of a speech
signal reflects usually the physiology of the vocal tract which is an important factor
for discriminating between speakers. Currently, the most commonly in use feature is
Mel-Frequency Cepstral Coefficient (MFCC) [49], which has shown a good perfor-
mance also in other speech processing tasks. Apart fromMFCCs, other features like
Linear Predictive Coefficient (LPC), Linear Frequency Cepstral Coefficient (LFCC),
Perceptual Linear Predictive (PLP) coefficients, and frequency filtered filter-bank
energies or in short Frequency Filtering (FF) coefficients [50, 51] are used as well.
In SR, the first and the second order time derivatives known as delta and delta-delta
coefficients are usually obtained to assist the recognition. The delta energy is also
commonly added to feature vectors.

Feature normalization strategies are also employed for environmental mismatch
compensation. Typically, the mean of the cepstral coefficients is removed in order to
avoid nonlinear effects due to the session variability. Optionally, the variance of the
cepstral coefficients can be also normalized to unit over a sliding window or over the
whole utterance. Sometimes, the shape of the cepstral coefficient distribution is also
taken into consideration. Among the several techniques, which have been proposed
for this purpose, Cepstral Mean Normalization (CMN), Cepstral Mean and Variance
Normalization (CMVN), and feature warping are more commonly in use [52].
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2.2 Supervectors and i-Vectors

The traditional speaker modeling is based on GMMs. A GMM is a weighted sum of
M Gaussian densities defined by three sets of parameters as λ = {

wi ,μi ,Σ i
}M
i=1,

wherewi ,μi andΣ i are, respectively, theweight, themean vector, and the covariance
matrix of the i th Gaussian density. The GMM parameters are estimated using the
Expectation-Maximization (EM) algorithm as in [47]. As the amount of the enroll-
ment data for each speaker is usually few, it is not so efficient to train a GMM for each
speaker from scratch. Therefore, a global GMM, which is referred to as Universal
Background Model (UBM), is first trained using a large number of utterances, and
then theUBM is adapted to a few amount of data of each speaker [53]. The adaptation
is typically performed using the MAP estimation given in [53]. GMM supervectors
are obtained by concatenating the D-dimensional mean vectors of the M-mixture
adapted GMM [54]. For the speaker a, a GMM supervector is represented as,

sa = (μa
1,μ

a
2, ...,μ

a
M)

t (1)

where t refers to a transpose operation.
It is possible to compare two supervectors based on their distance, but it is com-

monly more efficient to discriminate them by SVMs, leading to a hybrid generative-
discriminative classifier [54–56].

As the train and test speech utterances are usually spoken in different sessions,
e.g., the use of different microphones or different channels for transferring the speech
signal, some session variability compensation techniques are required, in addition
to the compensation techniques in the feature domain as described in Sect. 2.1, for
having a higher recognition accuracy and a more robust system. Two commonly in
use session compensation techniques in the supervector domain are the Nuisance
Attribute Projection (NAP) [57, 58] and Within-Class Covariance Normalization
(WCCN) [59].

Another successful technique for session variability compensation of supervectors
is the Joint Factor Analysis (JFA) [60] which models the supervectors as a linear
combination of the speaker and channel components. However, as in SVM based
techniques, the session variability compensation is carried out in the supervector
domain which is very high dimensional. Therefore, a big memory space is required
for the training of the compensation matrices and it is computationally expensive.
It is proposed in [14] to first reduce the dimension of the supervectors through an
effective factor analysis technique and then to perform session compensation in the
lower dimensional space. It is supposed that the supervector sa can be modeled as
follows [14],

sa = subm + Tν (2)

where subm is a mean supervector obtained from UBM, T is the total variability
matrix, and ν is a vector of latent variables. The mean vector of the posterior distri-
bution of ν, conditioned on the Baum-Welch statistics of the given speech utterance,
is referred to as i-vector ω and computed as follows,
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ω = (
I + T tΣ−1N (u)T

)−1
T tΣ−1F̃(u) (3)

whereN (u) is a diagonal matrix containing the zeroth order Baum-Welch statistics,
F̃(u) is a supervector of the centralized first order statistics, and Σ is a diagonal
covariancematrix initialized byΣubm and updated during the factor analysis training.
The T matrix is trained using the EMalgorithmgiven theBaum-Welch statistics from
the development data. More details can be found in [14].

2.3 i-Vector Scoring

The preliminary scoring technique for i-vectors is cosine distance [14, 61],

score(cosine) (ω1,ω2) = ωt
1ω2

‖ω1‖ × ‖ω2‖ (4)

where ω1 and ω2 are the target and the test i-vectors and ‖ω‖ denotes the norm of

the i-vector ω computed as
√

ω2
1,ω

2
2, ...,ω

2
n .

If the speaker labels for the background speech utterances are not available, the
cosine scoring gives as such a reasonable accuracy. However, given the speaker labels
it is more effective if a session variability compensation technique is applied before
scoring. Linear Discriminant Analysis (LDA), WCCN, or a combination of them
is usually used [14]. It should be noted that speaker labels are costly and are not
always accessible. PLDA [26] is a more effective technique when speaker labels
are available for the background data. In PLDA, scoring is performed along with the
session variability compensation. It assumes that each i-vector can be decomposed as,

ω = m + Φζ + ε (5)

where m is a global mean vector, Φ represents the eigenvoices, ζ is a latent vector
with a normal distribution prior, and ε is the residual vector normally distributed
with zero mean and the full covariance matrix Σ . The parameters of the model are
estimated by the EM algorithm given a large amount of speaker-labeled development
data [26]. Between and within class i-vector covariance matrices are stored and used
for scoring. More details can be found in [62].

It is shown [62] that the length normalization (ω ← ω
‖ω‖ ) helps the Gaussianity

of i-vectors which leads to a comparable performance to a more complicated PLDA,
which is referred to as heavy-tailed PLDA [30, 63]. As proposed in [64], i-vectors,
in an i-vector baseline system, are first globally whitened as,

ω′ = Hω (6)

H = V (D + ε)−1/2 V t (7)
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Fig. 2 Block diagram of a typical i-vector/PLDA SV system

where H is the whitening matrix, V is the matrix of eigenvectors obtained on the
covariance matrix of the background i-vectors, D is the diagonal matrix of the cor-
responding eigenvalues, and ε is a very small constant regularization factor. After
whitening, i-vectors are length-normalized. The block-diagram of Fig. 2 summa-
rizes a typical conventional state-of-the-art system for SV. More details regarding
the conventional techniques can be found in [65–67].

3 Deep Learning Frontends

We split the frontend into three subsections. The first subsection is about how DL
can be used in an i-vector extraction process from bottleneck features to DL based
acoustic modeling. There will be two subsections for supervised and unsupervised
speaker embeddings. The embeddings are referred to the stand-alone speaker repre-
sentations which are built independent from i-vector process and can be used directly
in recognition tasks.

3.1 Feature and i-Vector Extraction

The traditional i-vector approach consists in threemain stages:Baum-Welch statistics
collection, i-vector extraction, and PLDA backend. Recently, it is shown that if the
Baum-Welch statistics are computed with respect to a DNN rather than a GMM or if
bottleneck features are used in addition to conventional spectral features, a substantial
improvement can be achieved [15, 16, 18].
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Inputs:
ASR feature vectors

Outputs:
Posterior probabilities
of HMM hidden states

Bottleneck Layer

Other Hidden Layers

Fig. 3 A typical DNN architecture used for acoustic modeling and bottleneck feature extraction in
DNN based i-vector approach

A variant of DL architectures have been used for acoustic modeling. Figure3
shows a typical DNN architecture used for both Baum-Welch statistics computation
and bottleneck feature extraction. The network is preliminary trained for acoustic
modeling in Automatic Speech Recognition (ASR).

The output layer represents the acoustic classes, which are typically the states
of the Hidden Markov Model (HMM) in ASR (triphones). The input layer takes
usually a concatenation of successive ASR feature vectors. ASR feature vectors are
usually the log filter bank energies without any delta or delta delta coefficients. The
activation function for the output layer is softmax, for the bottleneck layer is usually
linear, and for other hidden layers can be sigmoid, rectified linear, or other similar
functions like tanh.

Given the DNN acoustic model, the zeroth and the first order Baum-Welch statis-
tics are computed as follows,

Nk(u) =
∑

t

p(ok |xt ) (8)

Fk(u) =
∑

t

p(ok |xt )x̂t (9)

whereNk(u) and Fk(u) are, respectively, the zero and first order statistics given the
utterance u, p(ok |xt ) is the posterior probability of kth output unit given the ASR
feature vector xt , and x̂t is the speaker feature vector which can differ from xt . Given
the Baum-Welch statistics, the T matrix training and the i-vector extraction process
will be the same as with GMM acoustic model. However, despite the GMM model,
the non-speech frames have been also used in the training of the DNN acoustic
model. Therefore, there will be two possible options for DNN statistics computation
as proposed in [37]. The first option is to use an external Voice Activity Detection
(VAD), discard non-speech frames, and use only theDNNoutput units corresponding
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to the speech states in HMM. The second option is not to use any external VAD,
compute the statistics for all frames, and, like in the first option, to discard the
output probabilities which correspond to non-speech states. The second option can
be interpreted as a kind of a soft VAD rather than the hard VAD in the first option.
It has been shown that the second option leads usually to a better performance in
terms of the accuracy [68, 69]. It is worth noting that for both options, the zeroth
order statistics should be normalized by the sum over the output units corresponding
to speech states.

Although the i-vector extraction using DNN acoustic models leads to a higher
accuracy in general, there are also some disadvantages. First of all, the use of DNN
itself increases the computational cost of the statistics to a great extent. Moreover,
the number of the output units is usually much higher than the number of Gaussian
mixtures in the GMM. This means that the dimensions of supervectors will be much
higher than the dimensions of GMM supervectors leading to higher computational
cost in both T matrix training and i-vector extraction. Additionally, the language
dependency of DNN acoustic models, the use of two different feature vectors for the
computation of the zeroth and the first order statistics (e.q., Eqs. 8 and 9), and the need
of the phonetic labels for training the DNN acoustic model are other shortcomings
of DNN based i-vector extraction approaches.

On the other hand, DNNs have been used to extract the so-called bottleneck fea-
tures. As it is shown in Fig. 3, the hidden layer before the last hidden layer is usually
much smaller than the other hidden layers and considered as the bottleneck layer.
The hidden unit values of this layer, given the input vectors, are referred to as bottle-
neck features. However, these features are usually highly correlated and, therefore,
they need some decorrelating, typically using Principal Component Analysis (PCA),
before usage. The traditional spectral features can be replaced or concatenated with
DNN bottleneck features and then a GMM or a DNN background model can be
used to compute the statistics [18, 20, 70]. Alternatively, other DL architectures like
Convolutional Neural Network (CNN) have been also employed to build an acoustic
model or to produce bottleneck features [71].

The recently proposed Adversarial Networks (ANs) [72] have drawn attentions
in the machine learning community. They composed of two competing networks of
which one (generator) tries to fool the other (discriminator). They have been applied
to audio and speech applications such as in [73, 74]. For SR task they have been
employed to produce bottleneck features in [75]. The input to the AN is the speaker
spectral features and the outputs of the Encoding Network (EN) are considered as
bottleneck features. For the training of the Discriminative Network (DN), the noise
types or clean speech are used as the output labels while for the training of the EN
the output label is always considered as clean speech careless to the input. While
training the EN, the DN parameters are fixed and vice versa. With this architecture,
the EN learns to produce features which are invariant to noise types.
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3.2 Supervised Speaker Embeddings

Recently, there have been several attempts to apply DL in order to build speaker
embeddings. Speaker embedding is often referred to a single low dimensional vector
representation of a speaker extracted using a neural network. Supervised speaker
embeddings are produced by training a deep architecture, using speaker-labeled
background data. This network, which is capable to produce high-level features, is
usually trained to discriminate the background speakers. Then in the testing phase,
the output layer is discarded, the feature vectors of an unknown speaker are given
through the network, and usually the average or theweighted average of the activation
of a given hidden layer are considered as the speaker embedding [21, 23].

Although several supervised speaker embeddings have been proposed, two of
them aremore commonly in use, namely d-vector [21] and x-vector [24, 25]. Figure4
shows a general architecture of a d-vector extraction training network. The inputs of
the network are the speaker feature vectors stacked over a context window, e.g., the
feature vector of a speech frame in time t is stacked with the feature vectors of the
frames in times t − 2, t − 1 and t + 1, t + 2 covering a context window of 5 frames.
In the training phase, the network tries to discriminate background speakers in the
frame level. In the testing phase, the output layer is discarded and the average of the
activation of the last hidden layer is usually considered as the d-vector for the given
speaker. Although the proposed network in [21] is amaxpoolingDNN and the hidden
units in the last two hidden layers are dropped out by 50%, any deep architecture
like CNN or Long Short-Term Memory (LSTM) can also be used (e.g., [23, 76]).

Figure5 shows a typical architecture for x-vector extraction. The idea behind
is similar to d-vector but the network for x-vector extraction tries to discriminate
background speakers in the segment level rather than the frame level in d-vector

Fig. 4 A general architecture for d-vector extraction. The network tries to discriminate between
background speakers in the frame level. The output layer is discarded for d-vector extraction in the
testing phase
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Fig. 5 A general architecture for x-vector extraction. The network tries to discriminate between
background speakers in the segment level. The output layer is discarded for x-vector extraction in
the testing phase

extraction. As it is shown in Fig. 5, the network is composed of two main parts. The
first part is a Time Delay Neural Network (TDNN) which works in the frame level
and takes the stacked feature vectors as the input. The second part is a feedforward
neural network which works in the segment level and takes the concatenated vectors
of the mean and the standard deviation of the activations in the last hidden layer
of the first part, i.e., the TDNN. There is a statistics pooling layer in the middle as
a connection between the first and the second parts of the network. The statistics
pooling layer aggregates over the variable-length input segments and prepares the
fixed-dimensional statistics vectors as the inputs to the second part of the network.
The TDNN part of the network proposed in [24] is composed of 4 hidden layers.
The input feature vectors are stacked in a 5-frame context window. The first two
hidden layers consider a temporal context of the previous layer with configurations
{t − 2, t, t + 2} and {t − 3, t, t + 3}, respectively. In the next two layers, no context
is added. In total, the first part of the network covers a temporal context of t − 8
to t + 8. The second part of the network has only two hidden layers which their
activations can be used as speaker embeddings or x-vectors in this architecture. The
primarily results showed that x-vectors outperform the traditional i-vectors only for
short duration speech segments [24]. However, a recent work has shown that data
augmentation, consisting of added noise and reverberation, can significantly improve
the performance of x-vectors while it is not that effective for i-vectors [25]. There
have also been some efforts to improve the quality and generalization powers of
x-vectors like by the modification of the network architecture [77] and the training
procedure [77–80].

Inspired by the triplet loss employed for image recognition in [81–83], it is also
used as a training procedure in a speaker embedding extraction architecture rather
than discrimination among background speakers as used in d-vector and x-vector
extraction networks (Figs. 4 and 5) [84, 85]. The triplet loss function is defined on
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triplets of speech segments namely anchor, positive, and negative samples. Given an
utterance of the anchor speaker, the goal is to reduce its distance fromother utterances
of the same speaker (positive) and increase its distance from the utterances of any
other speakers (negative). In other words, the loss function tries tominimize the intra-
speaker variability while maximize the inter-speaker variability at once. The most
recent works have focused mainly on different deep architectures like ResNet [86] or
VGG [87] as for instance in [88–90] and the practical aspects of speaker embeddings
like generalization power and speed [91].

In all of thementionedworks above, the input speaker feature vectors to the neural
network have been the most commonly in use hand-crafted features like MFCCs and
Filter Bank Energys (FBEs). There have recently been some attempts to get rid of
these features and work directly on raw speech samples [92, 93]. However, it is still
very new and under development and investigation.

3.3 Unsupervised Speaker Embeddings

All the speaker embeddings so far need speaker labels of the background data in one
wayor another. In supervised techniques, usually the performance is better sincemore
information are fed into the system, which are mostly the labels of the background
data. However, extracting the speaker labels are usually expensive and not a trivial
task. This motivates the methods based on unsupervised techniques. Having good
representational power, makes RBMs useful candidates for this purpose. They are
computationally low cost and unsupervised. In SR, they have been used for different
purposes such as i-vector classification [94, 95], speaker factors [96], and feature
extraction [97]. They have been employed in an adaptation process [41, 42, 46,
98] to further discriminatively learn target and impostor speaker models. RBMs
were also used to pre-train DBNs in order to extract Baum-Welch statistics [16,
99]. There have been also a few attempts to create alternative vector-based speaker
representation using RBMs [27–29, 100].

In the following, we will mainly describe the work of the authors proposed in
[28, 29]. In [28], GMM supervectors are considered as the inputs to the RBM and
activations of the hidden layer could be the low dimensional speaker embedding
vectors. An RBM, which was referred to as Universal RBM (URBM), is trained
using the background GMM supervectors. URBM tries to learn the total session and
speaker variability among background supervectors. Once the URBM is trained, the
matrix of the visible-hidden connection weight parameters is used for dimension
reduction of unseen GMM supervectors. These low-dimensional vectors are referred
to as GMM-RBM vectors in that work. Different hidden units and transformation
functions have been tried for URBM training and extraction of GMM-RBM vectors.
An efficient activation function which is referred to as variable RELU (VReLU) has
also been proposed as follows [28],
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Fig. 6 Activation function in a Rectified Linear Units (ReLU), b Variable ReLU (VReLU) with
positive threshold τ , and c VReLU with negative τ

f (x) =
{
x x > τ

0 x ≤ τ
, τ ∈ N (0, 1) (10)

where the fixed threshold in ReLU is replaced by a variable threshold τ which is
randomly sampled from a normal distribution N (0, 1) for each hidden unit at each
epoch.

There is an illustration of VReLU in Fig. 6 for positive and negative values of τ
and their comparison with the conventional ReLU. As shown in [28], this variable
threshold augments the generalization of URBMmodel bymodifying the histograms
of GMM-RBM vectors. It has recently shown that VReLU is also effective for su-
pervised speaker embedding extraction [91]. Experiments on the core test-common
condition 5 of the NIST 2010 Speaker Recognition Evaluation (SRE) showed that
GMM-RBMvectors could perform competitive to that of conventional i-vectors with
both cosine and PLDA scoring but with much less computational load in the vector
extraction stage, which is important for real-time applications. Moreover, fusing the
scores of GMM-RBM vectors with i-vectors outperforms i-vectors.

Another efficient unsupervised speaker embedding is proposed by the authors in
[29] using RBMs, where the speaker spectral features with a temporal context of
{t − 2, t − 1, t, t + 1, t + 2} are mapped into a single fixed-dimensional vector con-
veying speaker-specific information. This framework includes two stages, namely
URBM training based on background data, and model adaptation for all the utter-
ances. The URBM is considered as the speaker-independent model, which would
lead to speaker-dependent models via model adaptation. The adaptation is carried
out by training an RBM model, which is initialized by the URBM parameters. Data
samples of the corresponding utterance are used for the adaptation procedure, how-
ever unlike URBM training, it is performed with just a few number of iterations.
Unlike all the previous methods, in this framework the network parameters, connec-
tion weights, are utilized rather than using the network activations. In other words,
the connection weights of each speaker-specific RBM model are concatenated to
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(a) (b)

Fig. 7 Universal RBM (URBM) training for a GMM-RBM vector extraction, b RBM vector
extraction

(a)

(b)

Fig. 8 Unsupervised speaker embedding extraction a GMM-RBM vector [28], b RBM vector [29]

build an RBM supervector. The dimension of these supervectors are later reduced
using a PCA-whitening transformation and is referred to as RBM vectors.

Similar to i-vectors, these RBM embeddings can be used in SV using cosine or
PLDA similarity. Experimental results on NIST SRE 2006 database show that RBM
vectors achieve 15% and 24% relative improvements, in terms of EER, compared
to i-vectors using cosine scoring when they are used alone and in combination with
i-vectors, respectively. Figures7 and 8 compare, respectively, URBM training and
embedding extraction process for GMM-RBM and RBM vectors. For RBM vector
extraction, a temporal context is considered and the computational cost is relatively
higher compared to GMM-RBM vector extraction.
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4 Deep Learning Backends

In this section, we describe how DL technology can be used as a backend on
i-vectors. DL has been used on i-vectors for noise and reverberant effect compensa-
tion [101–104], domain adaptation [105], the compensation of the speech duration
mismatch between train and test i-vectors [106, 107], and as an alternative scoring
and session compensation technique to PLDA (e.g., [33, 35, 43, 96]).

As it was mentioned in Sect. 2.3, PLDA is one of the most effective backend
techniques for i-vectors. It performs the scoring together with the compensation of
the session variability, at the expense of speaker-labeled background data. Several
DL-based techniques have been proposed to compete with PLDA. Most of these
approaches use the speaker labels of the background data for training, as in PLDA,
but mostly with no significant gain compared to PLDA. For example, RBMs have
been proposed in [96] to learn speaker and channel factor sub-spaces in a PLDA
training. A tied variational autoencoder architecture is proposed in [35] to simulate
a nonlinear PLDA. A combination of RBM, autoencoder, and PLDA is proposed
in [36, 37] for speaker and channel variability compensation, which shows some
improvements compared to using only PLDA.

The storywill be different once no speaker-labeled background data is available or
only a few labeled data is accessible, which is the case inmost realworld applications.
In this case, the powerful PLDA will not be applicable. Recently, a SR challenge
was organized by NIST [38] to address how a comparable performance with PLDA
can be achieved when the background data is not labeled. A possible solution for
this scenario is to take advantage of unsupervised methods to automatically label the
background speakers as proposed for instance in [39, 40].However, thesemethods are
not able to correctly estimate all the labels. Although the PLDA trained by estimated
labels performs reasonably well on the given data [39, 40], the performance is still
not comparable with Oracle PLDA [64].

In this section, we mainly focus on the work proposed by the authors in [43]. The
goal is to decrease the performance gap between the unlabeled-based (cosine) and
labeled-based (PLDA) scoring baseline systems when the background data is not
labeled. The authors take advantage of the large amount of unlabeled background
data and the unsupervised learning of DBNs to train a global model referred to
as Universal DBN (UDBN). UDBN is then adapted to the little amount of data
of each target speaker and used as a speaker-specific initial point for training a
DNN to discriminate target and non-target input i-vectors. An impostor/non-target
i-vector selection algorithm is proposed as well to keep the training process almost
balanced. In summary, each target speaker is trained by a two-class DBN-DNN
with speaker-dependent initialization (Fig. 9). Figure10 shows how the connection
weights, between the first two layers, of the UDBN are adapted to two different
speakers.

The new challenging database NIST 2014 i-vector challenge [38] is used for the
experiments. The advantage of this database is that the i-vectors for the background,
train, and test sets are provided by NIST and, therefore, the baseline systems will
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Fig. 9 A hybrid DBN-DNN backend architecture proposed to model each target speaker given
target and non-target i-vectors [43]

Fig. 10 Adaptation of the UDBN connection weights, between the first two layers, to two different
speakers [43]
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Fig. 11 Performance comparison of the proposed DL-based backend (Fig. 9) [43] with other com-
monly in use backends on the evaluation set of NIST 2014 i-vector challenge

have the same performance for everyone to compare new proposed systems with.
Three baseline classification techniques are considered: cosine, PLDAwith estimated
labels, and PLDA with actual labels, which is called also Oracle PLDA system.
Experimental results based on EER and minDCF (Table1) and Detection Error
Tradeo (DET) curves (Fig. 11) show that the proposed DL-based backend decreases
the performance gap between cosine and Oracle PLDA scoring systems by 46% in
terms of minimum DCF (minDCF) which is roughly similar to the PLDA scoring
results obtained with unsupervised estimated labels. The interesting point is that the
combination of the proposed backend and the PLDA with estimated labels in the
score level is highly effective and decreases notably the performance gap by 79%.
More comparison results and details can be found in [43].

5 Deep Learning End-to-Ends

An end-to-end SR system treats the entire training process, the frontend and the
backend, as an integrated task. In other words, from the speaker spectral features all
the way to the similarity scores, are trained jointly at once. The idea of an end-to-end
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Table 1 Performance comparison of the proposed DL-based backend [43] with other commonly
in use backends on NIST 2014 i-vector challenge dataset

Progress set Evaluation set

EER (%) minDCF EER (%) minDCF

Unlabeled background data

[1] cosine 4.78 0.386 4.46 0.378

[2] PLDA (Estimated Labels) 3.85 0.300 3.46 0.284

[3] Proposed DNN-1L 5.13 0.327 4.61 0.320

[4] Proposed DNN-3L 4.55 0.305 4.11 0.300

Fusion [2] & [4] 2.99 0.260 2.70 0.243

Labeled background data

[5] PLDA (Actual Labels) 2.23 0.226 2.01 0.207

Fusion [2] & [5] 2.04 0.220 1.85 0.204

Fusion [4] & [5] 2.13 0.221 2.00 0.196

Fusion [2] & [4] & [5] 1.88 0.204 1.74 0.190

architecture for SR have been in use for a long time, e.g., in [2, 7]. This classification
scheme was carried out mostly by learning a distinct classifying network for each
individual speaker. In this sense for SV, the model of the claimed speaker to be
verified, were fed by the feature vectors of the test utterance.

Recently, there have been several attempts to build an end-to-end SR system using
DNNs. However, most of these efforts have addressed text-dependent SR as, e.g., in
[108–110]. After successful attempts of applying UDBN and model adaptation as a
backend to the i-vectors in [41], the same framework was proposed by the authors in
[46] for an end-to-end system to discriminate between targets and impostors accord-
ing to their speaker spectral features. However, the number of impostor samples, at
the feature level, is significantly larger than the previous work which was based on
i-vectors. Therefore, the impostor selection algorithmswhichwere based on i-vectors
were too costly to be feasible. Moreover, the number of target speaker samples varies
from one speaker to another, making the training process more difficult. It was shown
that the presented architecture in [46] was affected to a lesser extent by the problem
of imbalance data training between impostor and enrollment utterances and was able
to outperform the conventional end-to-end Multilayer Perceptron (MLP) models.
However, they could not compete with the modern i-vector systems.

In another attempt, [111] proposed to operate directly on raw audio signals which
are treated by a particular form of topology and weight evolving artificial neural
networks [112] known as neuroevolution of augmenting topologies [113]. However,
as the authors have stated in [111], it is just a proof-of-concept and the experiments
present the potentials of the algorithm for further investigations.
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6 Conclusions

Historically, SR has facedmany challenges over the time. Demands for having higher
accuracy, faster recognition, and more robustness against changing the environment
have led to non-stop investigations as in other applications. Deep Learning (DL) is a
new technologywithwhich higher abstract features of the input data can be extracted.
Hence, it has opened doors for new research in a wider range of signal processing and
machine learning applications. DL has been used in all parts of a typical SR system
from frontend to backend and even as a whole end-to-end system. As a frontend, it
has been used for the extraction of the so-called bottleneck features, or as an acoustic
model for the Baum-Welch statistic computation which is further used for i-vector
extraction. Several network architectures and training processes have been proposed
and substantial improvements are observed compared to classical acoustic models
and features in the i-vector extraction process. However, the proposed DL archi-
tectures still suffer from some shortcomings. For instance, the DL acoustic models
are usually language dependent, need phonetic labels, and increase the computa-
tional cost. On the other hand, deep network architectures have been used to extract
directly a compact representation of the speaker characteristics of a speech utterance,
which are often referred to as speaker embeddings. These low dimensional vectors
are proposed as alternatives to conventional i-vectors. Recent investigations have
shown that data augmentation can significantly improve the performance of speaker
embeddings and make them competitive with traditional i-vectors not only for short
segments but also for long-duration speech segments. The proposed DL techniques
for backend have been mostly supervised, i.e., given the speaker labeled background
data, and have tried to be alternatives to PLDA scoring. These techniques still do
not show very competitive performance to PLDA when they are used as standalone
systems, implying that there are still a lot of room for improvements. One of the
concerns in SR is that the speaker labels are usually expensive to obtain and are
not always accessible. Therefore, it would be difficult to use PLDA or other DL
based alternative techniques. The challenge will, therefore, be how one technique
can decrease the performance gap between unsupervised and supervised techniques
when the background data is not labeled. This is one of the areas that has not been
fully explored. Recently, some end-to-end systems have been proposed based on DL,
meaning that both frontend and backends are performed at once in a single system.
Although the reported results have been competitive to the conventional systems in
some cases, still much more accuracy gain is expected. One of the important and
promising observations on the use of DL in SR is that even if it has not been able
to win the traditional signal processing techniques in most cases, it has often been
effective in combination with them. Over the last few years, the authors have tried
to be active in doing research in all parts of a SR system, specifically to investigate
in more challenging areas like unsupervised speaker embeddings, unsupervised DL
based backends, and to build end-to-end systems all based on DL architectures.
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Baby Cry Detection: Deep Learning
and Classical Approaches

Rami Cohen, Dima Ruinskiy, Janis Zickfeld, Hans IJzerman
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Abstract In this chapter, we compare deep learning and classical approaches for
detection of baby cry sounds in various domestic environments under challenging
signal-to-noise ratio conditions. Automatic cry detection has applications in com-
mercial products (such as baby remote monitors) as well as in medical and psycho-
social research. We design and evaluate several convolutional neural network (CNN)
architectures for baby cry detection, and compare their performance to that of clas-
sical machine-learning approaches, such as logistic regression and support vector
machines. In addition to feed-forward CNNs, we analyze the performance of recur-
rent neural network (RNN) architectures, which are able to capture temporal behavior
of acoustic events. We show that by carefully designing CNN architectures with spe-
cialized non-symmetric kernels, better results are obtained compared to common
CNN architectures.
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1 Introduction

In recent years, deep neural networks have been used with great success in a variety
of practical real-world problems. As opposed to the traditional feature-extraction
stage in classical machine-learning algorithms, deep neural networks automate the
formation of useful features from the data. Such networks consist of multiple layers,
resembling the way computations are performed in the brain. In these layers, a
hierarchy of non-linear features is formed, growing in complexity with the depth of
the network. A combination of these features is used in the last layer of the network
to generate a prediction.

The most impressive results are perhaps in the area of computer vision, starting
with the seminal work of [1], where deep learning networks exhibit state-of-the-
art performance in various tasks, such as object detection and classification. With
the advances in deep-learning techniques and the availability of large databases for
training, deep learning is also becoming an important tool for automatic audio event
detection [2, 3].

In this chapter, we compare deep-learning and classical approaches for the detec-
tion of baby cry events in acoustic signals. Accurate and reliable detection of infant
cry events in a stream of audio is a prerequisite for classification algorithms and
screening tasks, which rely on the acoustic properties of the cry. One of the main
difficulties in detecting baby cry in a domestic environment or in other natural envi-
ronments, such as neonatal clinic units or nurseries, is the presence of noise and
background sounds–speech, music, electronic toys, door opening, phone ringing,
and many others. This poses a considerable challenge for classical machine-learning
approaches, which typically start by extracting a set of distinguishing features from
the acoustic signal. Background noise may have fundamental frequency or vocal
qualities similar to those of infant cry, hindering the detection algorithm. In addition,
the signal-to-noise ratio (SNR) often varies. Speech in particular poses a consider-
able challenge for the detection, due to frequency content similar to baby cry, which
may introduce false-positive events.

In the research described here we devise and evaluate deep-learning approaches
for baby cry detection.We design specialized convolutional neural networks (CNNs)
for this task and study appropriate image representations of audio signals for serving
as inputs to the CNNs.We use the non-linear logMel-filter bank (logMFB) represen-
tation, where each pixel represents a frequency range according to the logarithmic
Mel-scale; this representation is known to capture well the relevant frequencies that
distinguish different types of the acoustic signals. We compare the performance of
our CNN architectures to traditional machine-learning algorithms, such as logistic
regression and support vector machine (SVM) classifiers.

The performance evaluation is carried out using an annotated database containing
several hours of recordings of babies in domestic environments. In addition to baby
cry, these recordings contain various types of domestic sounds, such as phone ringing,
door opening and parent speech. We discuss the trade-off between the false-positive
rate and the detection rate, based on a receiver operating characteristic (ROC) curve,
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and provide performance analysis of CNN detection results with a varying number
of layers and units. We show considerable performance gain compared to classical
machine-learning approaches, especially at the low false-positive rate regime.

1.1 Approaches in Audio Event Detection

Audio event detection is the task of spotting specific acoustic events within long
clips or streams of audio data. Examples of acoustic events are human voices, spe-
cific utterances, different types of domestic or urban noises, sounds produced by
various musical instruments, and many others. The detection task can have varying
requirements: from simple spotting (presence or absence of the event in question,
such as in a voice activity detector [4]) to accurate demarcation of the event bound-
aries (onset and offset), e.g., [5]; in some cases detection of multiple event types
may be desired, which introduces a related task of sound event classification: assign-
ing each audio portion to one of several pre-defined classes (sometimes referred to
as annotation). The classification may be applied only to the detected events, for
example distinguishing different types of fricative consonants [6, 7], or to entire
segments, for instance, when discriminating between speech and music [8, 9], or
between various musical genres [10].

Automatic detection and classificationof acoustic events in audio signals is amajor
research field inmachine learning, due to itsmany applications. In the broadest sense,
it is a key part in auditory machine perception (also known as machine listening,
[11])—where a computer learns to interpret and analyze audio information similarly
to a human. Some examples of specific applications are speech recognition [12],
voice-controlled appliances [13], audio surveillance [14], health monitoring [15]
and audio signal enhancement [5, 16].

One of the early implementations of deep learning for acoustic event detection
[17], used a convolutional neural network (CNN) for a robust sound event recognizer
in different kinds of noisy environments. In [18], a deepmodel consisting of 2 convo-
lutional layers with max-pooling and 2 fully connected layers was used for detecting
various urban and environmental sounds. A CNN architecture was also employed
for acoustic scene classification task in [19]. Reference [20] showed that a convolu-
tional recurrent neural network (RNN) approach yielded better results in polyphonic
sound detection (where multiple types of events can be detected simultaneously)
than separate CNN/RNN or traditional approaches. A similar approach was used in
[21] for a low-latency monaural sound source separation system. Applicability of
deep learning approaches for automatic music tagging (assigning properties such as
genre, instrumentation, rhythm, etc.) was also demonstrated [22, 23].

Other types of deep learning architectures have also been investigated. For exam-
ple, in [24], the authors used a deep network consisting of convolutional layers,
followed by fully connected layers and a single-element output layer with a sigmoid
activation function; [25] used a topology known as Capsule Network (CapsNet, [26])
and found that it could outperform a traditional CNN. Another study compared deep
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learningmethods to a hand-crafted support vector data description (SVDD) classifier
with a few carefully selected features, and found that the latter can achieve compa-
rable performance to a CNN at lower computational cost, but with the drawback of
having to design features specific to the task [27].

Various methods have also been investigated for the specific task of cry detection;
a good survey of traditional approaches is available in [28]. In recent years, advances
in deep learning made it a popular technique as well. In [29], a specially-designed
CNN was shown to outperform a traditional logistic regression-based classifier in
very low false-positive rate regimes. In [30], a CNN running on audio captured from
a microphone array installed next to a baby carriage could detect cry with 86%
accuracy. Reference [31] compared a CNN followed by a Hidden Markov Model
(HMM) to a Linear Discriminant Analysis (LDA) classifier.

An automatic baby cry detector has many applications: it is commonly employed
in safety-related devices, such as baby monitors [32], and has been proposed as
part of a system to detect children forgotten in vehicles [33]; some commercial
products featuring cry detection technology include [34–36]. Identification, followed
by classification of the cry signals, can be useful for medical purposes, such as
detection of pathologies based on the acoustic properties of the cry signal (e.g., [37,
38]), or assessment of the neurological state of infants based on differences in the
crying between full-term and preterm babies [39].

1.2 The Origin and Role of Infant Cry

The human cry has several roles, depending on developmental stage. The initial func-
tion, and thus developmental origin, is relatively clear. For some of the other aspects,
there are generally-accepted theories and hypotheses, but not solid conclusions, aswe
are not sufficiently confident of psychological theory as a means for prediction. The
vocal cry is one of the first forms of communication to interact with the caregiver
[40], and is common to more species than humans. Reference [41] proposed that
feedback-sensitive attachment behavior is vital to retain the caregiver’s proximity,
and that crying is one of the most important channels for establishing it [42–44]. In
humans, the infant depends on the caregiver for food, safety and warmth [45]. As a
result, much of our functioning focuses on a kind of “co-regulation” that caregivers
provide to infants early in life, and adult partners to each other later in life [46].

Crying in human infants is elicited from rhythmical transitions between inhalation
and exhalation, due to a vibration of the vocal cords that produces periodic air pulses.
The period of these pulses is called the fundamental frequency (pitch), and its typical
values in healthy babies are 250−600Hz. The cry signal is shaped by the vocal tract,
leading to resonant frequencies termed as formants. The first two formants occur
typically around 1100Hz and 3300Hz, respectively [47]. Some studies [44, 48] point
out that humans early in life already display various forms of crying: protest crying (in
which the infant faces loss, like being left in the crib, and wants to undo the loss), sad
crying of despair (a low wail signifying acceptance of loss), and detached inhibited



www.manaraa.com

Baby Cry Detection: Deep Learning and Classical Approaches 175

crying (typically an absence of outward crying, associated with a life-threatening
separation from the caregiver). Sometimes additional types, such as hunger and pain
crying are considered.

For a long time, researchers assumed that different types of cries cannot be reli-
ably distinguished, as even mothers are not always accurate at discriminating pain
versus hunger crying (e.g., [43]). Nowadays, with drastically improved accuracy of
measurement equipment and analysis software, and with much larger sample sets
available, there are reasons to doubt this assumption. Recent research suggests that
one can reliably distinguish between pain, hunger, sadness, fear, and anger cries on
the basis of facial expressions and cry characteristics [49, 50], and it seems plausible
that deep learning methods can be applied for successful automatic classification of
different types of cry.

The type, frequency, and duration of crying are highly variable, especially after
early infancy (e.g., [43, 51]). Crying peaks at about 6 weeks and then declines until 4
months after which it remains rather stable [52]. The development of crying depends
in part on the caregiver’s response to the cry (or the lack of it). In young infants, if
the caregiver responds (by holding, touching, and/or feeding) crying typically ceases
[53]. A positive response from the caregiver signals that the infant can rely on others
to help meet environmental demands, while a lack of it signals that the infant needs
to cope with environmental demands itself. Later in life, the type, frequency, and
duration may depend on an individual’s temperament [54, 55], or attachment [56].
For example, infants whose mothers did not respond consistently to their cry later
started oscillating between clinging to their mother and resisting contact (see e.g.,
[43]). In many cases, infants adapt to whatever is required for survival (for example,
self-reliance in case of a non-responsive caregiver); however, differences in crying
related to such adaptations have not yet been fully investigated.

There is no complete knowledge of the characteristics of pathological cry, in part
due to a lack of sufficiently large samples and accurate methodologies. At the very
least, a cry signal with fundamental frequency (pitch) above 600Hz has been gener-
ally regarded as indicating health issues [57]. Another function of crying may thus
well be to convey the infant’s fitness, preventing caregivers from investing [47]. Pain
crying usually starts abruptly, is usually longer, and often involves hyperphonated
cries (characterized by high pitch; [43]). A commonly accepted pathology, known as
‘colic’, is indicated by excessive crying; researchers typically distinguish between
intrinsic causes for colic, such as food allergies, or extrinsic ones, for example inap-
propriate physical contact.

Classification of normal and pathological infant crying (especially in newborns)
has been the subject of extensive research. Some studies focused on a specific pathol-
ogy, such as deafness, or respiratory distress syndrome (RSD), while in others mul-
tiple pathologies were investigated [58]. Differences of cry between normal babies
and those with high-risk for autism have been studied as well [59, 60]. A recent
survey of the research status is available [61].

While pathological cry in newborns has been extensively studied, little is known
about how crying early in life relates to potential maladaptive behaviors later in
life. Large samples of crying recordings, combined with novel machine learning and
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deep learning techniques can help identify possible connections (for examples in
psychology, see [62, 63]). One of the difficulties with research in the early stages
of life is that it is often too intrusive. To make it less intrusive, we have integrated
automatic cry detection in an Android-based smartphone app.1 This smartphone app
can be used to detect, in real-time, baby cry events, in the infant’s earliest days. Usage
of the app allows the infant cry to be correlated to other variables (like caregiver
peripheral temperature).

2 Deep Learning Approach

Convolutional neural networks (CNNs) [64, 65] have wide applications in the fields
of computer vision, natural language processing and many others, especially where
huge amounts of data have to be processed and classified. Like ordinary neural
networks, CNNs consist of multiple layers connected by neurons that have learnable
weights. Commonly used layer types are: convolutional layers (applying convolution
/ dot product operation), pooling layers (combining outputs of several neurons into a
single neuron in the next layer), rectified linear unit (ReLU) layers, fully-connected
(dense) layers andmore. The exact number and configuration of layers is application-
dependent.

CNNs learn the parameters (usually termed as weights) of each layer in a train-
ing process. This process is carried out using a gradient descent approach and the
backpropagation technique [66]. The complexity of the training process scales with
the number of trainable parameters of the network. In typical CNNs, there might be
thousands to millions of parameters, whose values are learned in the training stage.

In contrast to traditional classification algorithms (e.g., support vector machines),
no features are typically extracted from the data prior to CNN-based classification
and detection. Instead, the input to a CNN usually consists of the raw data, e.g.
images, which is one of their primary advantages. However, the performance of
CNN-based classifiers depends heavily on the architectural structure of the CNN
in use. Designing a CNN architecture requires choosing the number of layers, the
kernel size, connectivity between layers and more.

In this section, we design and evaluate multiple CNN architectures for the
detection of baby cry, operating on log Mel-filter bank representation of the audio
data.

2.1 Data Representation

In image classification or detection tasks based on CNNs, the input to the network
is typically composed of the raw images. The CNN role is then to efficiently extract

1Code available at https://github.com/co-relab/bioapp.

https://github.com/co-relab/bioapp
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spatial features from the input images and to propagate them to deeper layers, such
that correct prediction is obtained at the CNN output. For example, the detection of
an object such as a cat can be viewed as the detection of its eyes, mouth and tail, by
dedicated filters. However, using raw audio signals as an input to a CNN is typically
undesired, as the convolution filters will be applied to temporally-adjacent samples.
When dealing with sampling rates such as 44,100Hz, the output of such filters is of
limited benefit, in particular when typical small (one-dimensional) kernels are used.

To better exploit the power of CNNs for audio classification tasks, it is often ben-
eficial to convert audio signals to an image representation with meaningful spatial
information. A natural approach for this aim is the use of time-frequency representa-
tions. The most common type of such representation is spectrograms, generated by
applying the short-time Fourier transform to the data. However, the linear scale of
the spectrogram (both in time and frequency domains) makes it difficult to separate
simultaneous sounds with similar frequency content based. Thus, the efficiency of
spectrogram representation for our task is likely to be of limited benefit, in particular
in presence of noise with characteristics similar to those of cry signals.

To improve the robustness of the CNNs to noise, we use a log Mel-filter bank (log
MFB, LMFB) representation [67] of the audio signals. The Mel-scale aims to mimic
the non-linear human ear perception of sound, by being more discriminative at lower
frequencies and less discriminative at higher frequencies. This logarithmic repre-
sentation is often beneficial for sound classification, as it better separates different
types of signals with similar frequency content. The main difference between MFB
and Mel-Frequency Cepstrum coefficients (MFCC) [67] is that the discrete cosine
transform (DCT) of the log-power spectrum is skipped inMFB. This is because DCT
decorrelates the data, whereas spatial correlation of the input is actually advantageous
for a CNN. The reason is that the 2D convolution operation used in convolutional
layers is motivated by the correlation between neighbouring pixels in natural images.

To produce a logMFB representation of the data, the input audio signal is divided
into consecutive segments of 4096 samples each. These segments are further divided
into frames of 512 samples each, with a step size of 128 samples. As the contribution
of high frequency bands to the detection of cry signals is limited, a low-pass filter
at 11,025Hz is applied to the signal. A log MFB representation is then produced
for each frame, using 50 triangular filters distributed according to the Mel scale in
the frequency range [0, 11025]Hz. Given segments of 4096 samples and a step size
of 128 samples, this leads to a 50 × 29 “image” representation of each segment.
Another representation which has been used is the log Linear Filter Bank (LFB),
which is produced using the same procedure as theMFB but with linearly-distributed
filters. An example is shown in Fig. 1. In this figure, a short segment of a baby cry
signal waveform is shown, with the corresponding spectrogram, MFB and LFB
representations.
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Fig. 1 Different representations of a short segment (5 s) of a baby cry signal. a Waveform of
the signal; b Spectrogram; c Mel Filter Bank (MFB) representation; d Linear Filter Bank (LFB)
representation. In b, c, and d the vertical axis represents the frequency axis in a range of 0–5kHz.
Note that in b (spectrogram) and d (LFB) the frequency axis is linear, while in c it is logarithmic
(mel-frequency)

2.2 Feed-Forward Architectures

In natural images, both image dimensions carry the same content (pixel color values).
Therefore, CNNs for images typically use two-dimensional filters that share weights
across both dimensions and symmetric (e.g., 3 × 3) kernels. However, in the audio
domain, a crucial observation is that for time-frequency representations, the x and
y axes represent fundamentally different units, i.e., time in seconds and frequency
in Hz. In addition, the scale of each axis might be different. Taking the LMFB
representation as an example, the frequency axis is in logarithmic scale whereas
the time axis is in linear scale. This calls for a careful design of the filter kernels,
preferably concentrating on frequency rather than time content.
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In [29], we developed a specialized CNN architecture for cry detection. Most
notably, we used convolution layers with “tall” filters, i.e., non-symmetric kernels
with height (frequency content) larger than width (time content). This choice of
kernels is motivated by the logarithmic scale of the frequency in the LMFB rep-
resentation. The use of “tall” filters makes the network “focus” on the frequency
behaviour, better capturing subtle changes in signals with similar frequency content.

In this study, we improve the architecture proposed in [29] and compare the results
to an architecture based on the Inception module [68]. In our CNN architecture, we
have five convolutional layers followed by a fully-connected layer for final classifi-
cation. We start with a 14 × 10 kernel for the first convolutional layer, reducing each
dimension of the kernel by 2 for each subsequent layer. This gradual decrease of the
kernel dimensions can be seen as multi-scale processing of the input data, which cap-
tures the frequency behaviour in an efficient manner. The architecture is presented in
Table1. Note that each convolutional layer is followed by ReLU (omitted in Table1).

In our experiments, we were looking to test whether our specialized “tall” kernels
perform better than the more common 3 × 3 kernels. In addition, we were interested
in architectures with a smaller number of trainable parameters. For this purpose, we
considered two additional architectures similar to those presented in Table1: the first
architecture has kernels replaced by 3 × 3 kernels for all convolutional layers; the
second has the same “tall” kernels, but with a reduced number of filters, such that
the total number of trainable parameters is 270,000. A visualization of the feature
maps obtained for the first, third and fifth convolutional layers after the training
phase is provided in Figs. 2 and 3. Note that the differences in scale of the feature
maps between the figures are due to the different kernel sizes. This visualization
demonstrates that the learned features in each architecture are significantly different.
As expected, the features in the first layer are less structured, whereas the last features
exhibit more organized patterns.

For comparison, we used an architecture based on modules similar to the
Inception-ResNet-A module used in the Inception-Resnet-v2 network [68]. In the
Inception-ResNet-Amodule, the input is processed through two parallel convolution
paths, composed of convolutional layers with different kernel sizes. For improved
performance, a residual connection [69] is used, so that the output of the convolution

Table 1 Our CNN 9.6M architecture

Layer Filter size, #filters Activations #Parameters

Conv1 14 × 10,300 37 × 20 × 300 42,300

Conv2 12 × 8,250 26 × 13 × 250 7,200,250

Conv3 8 × 6,250 19 × 8 × 150 1,800,150

Conv4 6 × 4,150 14 × 5 × 150 540,150

Conv5 4 × 2,50 11 × 4 × 50 60,050

Fully-connected – 2 4,402

Total – – 9,647,302
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(a) Conv1 (b) Conv3

(c) Conv5

Fig. 2 A visualization of the feature maps (scaled) produced by our CNN architecture with “tall”
kernels. Note that only the first 49 maps are shown for each layer

operation of the inception module is added to the input. In addition, batch normaliza-
tion [70] is applied to improve training convergence. To match the input and output
depth size, 1 × 1 kernels are applied to both the input and its processed version. The
inception architecture is relatively fast to train, as it is mostly based on convolutional
layers.

In our variation of Inception-ResNet-Amodulewe omit the last 384filters of 1 × 1
kernels for reduced complexity and due to the relatively low dimensionality of the
input. In our experiments, we consider up to three Inception-ResNet-A modules. To
obtain a proper two-class (cry/not cry) distribution, we reduce the output depth of the
last module to 2 using two fully-connected layers (with 10 and 2 units, respectively).
The final output is obtained by applying softmax to the output of the last fully-
connected layer.
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(a) Conv1 (b) Conv3

(c) Conv5

Fig. 3 A visualization of the feature maps produced by our CNN architecture with 3 × 3 kernels

2.3 Recurrent Neural Networks (RNNs)

In traditional feed-forward architectures, the inputs and the outputs are independent
of each other. As a result, such networks are not capable of modeling sequences;
for example, feed-forward networks might not be an optimal choice for tasks such
as predicting words in a sentence (e.g., auto-complete), as we need to know what
the previous words were. On the other hand, recurrent neural networks (RNNs) [65]
are designed to capture temporal information, by introducing a memory compo-
nent. In recent years, RNNs had great success in a variety of problems such as lan-
guage modeling, translation, image captioning and more. They have also been found
useful for tasks of audio detection and classification [71], in particular for speech
recognition [72].

In RNNs, the output at each time instant depends on previous computations. This
is obtained by learning a state for each time instant, which depends on the current
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input and the previous state. The initial state is typically initialized to all zeroes.
Compared to a possible approach of using 3D convolutions (i.e., operating on the
temporal axis as well), RNNswith 2D convolutions (and states) offer a more efficient
and less complex approach for learning spatiotemporal features. For our application
of cry detection, the use of memory is expected to be beneficial, as cry sequences
are likely to be correlated.

In our experiments, we studied the performance of bidirectional recurrent neural
network (BiRNN) architectures [73]. In BiRNNs, the output at each time instant
depends on future inputs as well as on past ones: the network has both forward and
backward states, which are used at each time instant to compute an output. BiRNNs
typically exhibit improved performance and convergence behaviour over standard
one-sided RNNs [72, 74, 75]. We considered two kinds of BiRNN architectures,
each with two layers. In the first architecture, we used standard BiRNN layers.
In our second architecture, we replaced the BiRNN layers with bidirectional long
short-term memory (BiLSTM) layers [76–78], in which the computation of the state
is more complex compared to BiRNN, resulting in better capturing of long-term
dependencies. In addition, BiLSTM layers are less susceptible to the problem of
vanishing or exploding gradients [79].

As a preliminary step, the input data is processed by an all-convolutional network,
with the same structure (apart from the fully-connected layer) as in Table1, but
with only 270,000 parameters. This number of parameters is obtained by reducing
the number of filters in each layer of the architecture presented in Table1 by an
appropriate factor. In both our BiRNN and BiLSTM architectures, we used states
with 128 units.

3 Classical Approaches

Classical approaches for baby cry detection typically involve extraction of distin-
guishing features from segments of the audio signal, and using them to train a clas-
sifier. Common features include pitch, formants, and various temporal and spectral
properties, such as short-time energy, Mel-frequency cepstrum coefficients (MFCC)
and others [28, 37, 80]. In our study we compared the deep learning architectures
to two traditional techniques–one using a logistic regression classifier, and the other
using a Support Vector Machine (SVM). The duration of the audio segments and the
size of the feature vectors, were similar to those used in the deep learning algorithms.

3.1 Preprocessing and Feature Extraction

The audio recordings are divided into consecutive overlapping segments of 4096
samples (about 93ms) with an overlap of 50%. For pitch detection purposes, the
segments are further divided into frames of 16ms.
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The following features are computed for each audio segment:

1. Pitch-related features. The pitch detection algorithm uses peaks in the cepstrum
domain c(n) = IDFT(log(DFT|x(n)|)) to obtain a rough estimation, and cross-
correlation in the time-domain for refinement of the initial pitch value [81]. Once
the prominent peak Np is found in the section of a cepstrum that corresponds to
the expected periodicity in baby cry signals (200–600Hz), a more accurate value
is obtained by finding the maximum cross-correlation between adjacent signal
vectors of length K , where K is a value in a neighborhood of size δ around Np.
This approach is based on the assumption that maximal similarity between the
vectors is obtained when their length is equal to the pitch period N0:

N0 = argmax
Np−δ≤K≤Np+δ

K∑

j=1
y1( j) · y2( j)

√
K∑

j=1
y21 ( j) ·

K∑

j=1
y22 ( j)

(1)

If the maximum cross-correlation is over 0.85, the pitch is considered valid and
the frame is considered voiced. Since the pitch is computed on a frame level, the
following segment level features are extracted from it: the median value across
the segment, and run-length (number of consecutive voiced frames).

2. Harmonics analysis. Cry bursts are predominantly voiced, and therefore their
signal is characterized by a harmonic structure, as demonstrated in Fig. 4. There-
fore, we expect high spectral energy content around the harmonic frequencies,
and compute two parameters to capture that. The first, known as Harmonicity
Factor (Hf ) measures the harmonic content of a given frame by finding the fre-
quencies of the L most prominent peaks fi in the spectrum, and calculating the
amount of their deviation from a predicted harmonic frequency according to the
corresponding f0 (pitch) estimation, as follows:

Hf = 1

L

L∑

i=1

min( fi mod f0, f0 − fi mod f0) (2)

For harmonic peaks the distance between the frequency and an integer multiple of
f0 should be small, and therefore for frames with harmonic structure Hf should
be small (see Fig. 5).
The second parameter is the Harmonic-to-Average Power Ratio (HAPR) which
measures the ratio between the power of the first M harmonic components to that
of the average spectral power of the frame. If X (k) is the DFT of the audio frame,
and fm is the frequency of peak in the vicinity of the mth harmonic, HAPR is
computed as follows [82, 83]:
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HAPR = 1

M

M∑

m=2

10 log10
|X ( fm)|2

( 1
N

N−1∑

k=0
|X (2πk/N )|2)

(3)

3. Filter banks and cepstrum coefficients. A filter-bank representation is obtained
by multiplying the power spectrum Xm(K ) by triangularly-shaped filters Vi (K ),
where Ui and Li are the lower and upper bounds of each filter, respectively,
and Si = ∑Li

K=Ui
|Vi (K )|2 is a normalization coefficient to compensate for the

variable bandwidth of the filters:

Ei = 1

Si

Li∑

K=Ui

|Xm(K )Vi (K )|2 (4)

A commonly used filter-bank representation uses the Mel scale, which arranges
the filters and their widths in a way that attempts to mimic the auditory perception
of the human ear [84, 85]. A comparison between the Mel filter-bank (MFB) and
Linear filter-bank (LFB) is shown in Fig. 6, and their spectral representations can
also be seen in Fig. 1.
WhenMFB representation is used, theMel-Filter CepstrumCoefficients (MFCC)
vector is obtained by applying the Discrete Cosine Transform (DCT) to the log-
arithm of the energy vector Ei . In our algorithm, we used the first 38 MFCC.
Figure7 shows an example of the distribution of the 5th MFC coefficient among
baby cry sections (red) versus all other sound events (blue) in the training set
(about 320 s). The discriminating potential of this feature is evident, although
there is a wide overlapping area.

4. Spectral energy parameters. Different types of audio signals often exhibit dif-
ferent patterns in the spectral energy, as represented by the power spectrum
|Xm(K )|2.We computed the following two parameters: the Spectrum rolloff point
fR—the frequency below which 75% of the spectral energy is concentrated, and
the Band energy ratio between the total spectral energies of two frequency bands
[0,2500Hz] and [2500Hz, Fs/2], where Fs is the sampling frequency:

fR = f :
f∑

K=0

|Xm(K )|2 = 0.75 ·
Fs/2∑

K=0

|Xm(K )|2 (5)

BER = 10 log10

∑Fs/2
K ( f2500Hz)

|Xm(K )|2
∑ f2500Hz

K=0 |Xm(K )|2 (6)

5. Time-domain features. Simple time-domain features, such as the zero-crossing
rate (ZCR) and short-time energy were also used:
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Fig. 4 A spectrogram of an infant cry signal, demonstrating the harmonic structure of voiced bursts

Fig. 5 Fundamental frequency F0, and Harmonicity Factor (H f ) aligned for several cry bursts

ZCR(m) = 1

2N

N−1∑

n=1

|sign(xm(n)) − sign(xm(n − 1))|. (7)

E(m) = 1

N

N−1∑

n=0

x2m(n). (8)

A detailed description of the features and their computation is available in
[9, 67, 80].
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Fig. 6 A schematic description of Mel-filter bank (bottom) versus Linear filter bank (top), both
with 10 filters in the range of 0–5kHz

Fig. 7 A histogram of the 5th MFC coefficient. Dashed line: cry events, solid line: other events

3.2 Logistic Regression

The logistic regression classifier [64] is a simple supervised discriminative algorithm,
with low computational complexity. The logistic regression is a non-linear hypothesis
function of the form:

hθ(x) = 1

1 + exp
(−θT x

) , (9)
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where x is a d-dimensional feature vector and θ is a weight vector. In our case,
hθ(x) ∈ (0, 1) predicts the likelihood of a segment to be a cry sound (values close to
1), or a different sound (values close to 0). The final binary classification y ∈ {0, 1}
(where 1 denotes a cry event) is obtained by comparing hθ(x) ∈ (0, 1) to a threshold
value. In the training phase of the classifier, a gradient descent algorithm is used to
find θ that minimizes the (L2) regularized cross-entropy cost function

E(θ) = − 1

n

n∑

j=1

y( j) log

(
1

1 + exp(−θT x( j))

)

(10)

− 1

n

n∑

j=1

(
1 − y( j)

)
log

(
exp(−θT x( j))

1 + exp(−θT x( j))

)

+ λ

2n

d∑

k=1

θk
2,

given a dataset of n labeled samples
{
x( j), y( j)

}n
j=1, where λ is a regularization

parameter. The θ-minimizer found by the stochastic gradient descent algorithm is
then assigned to (9) to classify new unlabeled samples.

A schematic block diagram of the logistic-regression-based algorithm is shown
in Fig. 8. The input data is divided into consecutive segments of 4096 samples. For
each segment a 50-dimensional feature vector is computed. The trained regularized
logistic regression is then applied to each feature vector, and the hypothesis function
hθ(x) is obtained, representing an estimation of the posterior probability p(y|x),
where y ∈ {0, 1} is the sound event to be classified as cry or non-cry and x is the
feature vector. Using a threshold valueTh1, an initial decision value for each segment
is set according to the following rule:

d(n) =
{
1, if hθ(x) > Th1

0, otherwise.
(11)

Fig. 8 A schematic block diagram of the logistic regression algorithm
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The duration of a single segment is about 93ms, while most cry events are at least
several hundredofmilliseconds long. In order to avoid erroneous detection of sections
that are too short to be a likely cry event, a smoothing operation is performed as
follows: a sliding window of length L is applied to the initial sequence of decisions
and the smoothed decision ds(n) for the central segment is updated according to the
following rule:

ds(n) =

⎧
⎪⎨

⎪⎩

1, if
M∑

k=−M
d(n − k) > Th2

0, otherwise.
(12)

where L is odd, M = (L − 1)/2 and Th2 ∈ [1, L] is a predefined threshold value.

3.3 Support Vector Machine

The Support Vector Machine (SVM) is a supervised large-margin classifier, which
atteempts to find a separating hyperplane between two classes of data, such that the
margin between the hyperplane and the closest samples in either set is maximized. To
train the SVM, we applied the Sequential Minimal Optimization (SMO) algorithm
[86], which solves the following minimization problem:

min
θ0,θ,ξ

1

2
‖θ‖ + C

M∑

m=1

ξm s.t. xm ≥ 0, ym(θ
T xm + θ0) ≥ 1 − ξm, m = 1, 2, ...,M

(13)
where θ and θ0 are parameters of the maximal margin hyperplane to be learned, xm
are the input data points (feature vectors), ym ∈ {−1, 1} are the output points (data
labels - “cry” or “not cry”), ξ are slack variables that permit margin failure and C
trades off a small number of margin failures and wide margin [86].

The trained SVM can be used in place of the logistic regression classifier in the
block diagram of Fig. 8. Performance comparison of the two classifiers is given in
Table2.

Table 2 A summary of the false-positive rates for a given detection rate

Classifier/Detection rate 75% 80% 85% 90% 95%

CNN 9.6M “tall” 0.25% 0.44% 0.66% 1.07% 3.50%

CNN 270K “tall” 0.47% 0.72% 0.95% 1.95% 6.30%

CNN 9.6M 3 × 3 0.51% 0.73% 1.30% 2.39% 5.41%

CNN 270K 3 × 3 0.48% 0.98% 2.01% 3.22% 7.8%

SVM 0.31% 0.52% 1.39% 4.13% 9.75%

Logistic regression 0.38% 0.6% 1.23% 3.81% 9.80%
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4 Performance Evaluation

4.1 Database

The database for this study consists of three hours of audio recordings (sampled at
44, 100 Hz) of 0–6 month old babies in the Netherlands using off-the-shelf smart-
phones [87]. The babies were recorded continuously for several days in a domestic
environment. The recordings were fully annotated, with about 50 different event
types, such as crying, parents talking, door opening/closing, etc.

4.2 Training and Test Process

Our training corpus contained 14% of the labeled data, whereas the test corpus
contained the remaining 86%.We trained our feed-forward CNN architectures using
MATLAB and our RNN architectures (BiRNN and BiLSTM) with TensorFlow. We
used Adam [88], which is an adaptive learning rate optimization algorithm, with an
initial learning step of 0.00001. The gradient in each iteration was evaluated using
mini-batches of 32 segments. Our loss function was cross-entropy loss. To avoid
over-fitting, we applied L2 regularization to the weights, with a scale of 0.0001. The
networkswere trainedover 20 epochs of the trainingdata. Thehardware used includes
Intel Core i7-7700K 4.2GHz CPU and NVIDIA GTX 1080Ti 11GB GDDR5 GPU.

During testing (i.e., inference), we used the majority vote process depicted in
Sect. 3.2 with L = 17. That is, a segment was classified as ‘cry’ if at least 8 other
segments in a neighbourhood of 17 segments were classified as ‘cry’. The measured
inference latency (in software) forCNN9.6Mwas smaller than 2.5msper segment. In
fact, this latency can be considerably reduced by using dedicated tools for deploying
trained networks in hardware, such as TensorRT by NVIDIA or Deep Learning
Deployment Kit by Intel.

4.3 Results

Asperformancemetrics,we used two importantmeasures known as the detection rate
and the false-positive rate. The detection rate (also known as sensitivity or recall) is
defined as the ratio between the number of true-positive events (TP), i.e. the number
of cry events correctly identified, and the total number of cry events in the recording
set (true positives TP and false negatives FN). The false-positive (or false-alarm)
rate is defined as the ratio between the number of false positives (non-cry events
identified erroneously as cry events (FP)) and the total number of non-cry events in
the recording set (false positives (FP) and true negatives (TN)). The detection rate is
therefore TP/(TP + FN), and the false-positive rate is FP/(FP + TN).
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Fig. 9 A comparison between MFB and LFB ROC curves for the CNN with 9.6M parameters

In the analysis of the cry-detection performance of different classifiers we focus
on the trade-off between the false-positive rate and the detection rate. In particular,
we are interested in the performance in the low false-positive rate regime, which
is required in practice. The performance evaluation was carried out using receiver
operating characteristic (ROC) curves.

First, we were interested in comparing the MFB and LFB representations (see
Sect. 2.1), by comparing the ROC curves of our CNN 9.6M architecture for both
representations. As shown in Fig. 9, the MFB representation is superior to LFB.
As discussed earlier, this is expected as the Mel-scale in MFB is better suited for
detecting signals in the presence of noise with similar characteristics.

In our next experiment, we compared the performance of the feed-forward archi-
tectures described in Sect. 2.2. The results are presented in Fig. 10. First, for all
false-positive rates, our CNN 9.6M “tall” architecture outperforms all other archi-
tectures. This is most noticeable for false-positive rates below 2%. It is interesting
to note that the CNN 270K “tall” network has very good performance, despite using
far fewer parameters compared to the CNN 9.6M “tall” architecture. In addition, it
has similar results to CNN 9.6M 3 × 3. That is, the use of “tall” filters is shown to
be highly beneficial, even for networks with a small number of parameters.

We later compared our CNN 9.6M to the BiRNN and BiLSTM architectures
described in Sect. 2.3. The results are shown in Fig. 11. As evident by the result,
the introduction of memory through the use of RNN has limited impact. The reason
might be the short duration of cry events, which limits the benefit of architectures
with memory. This perhaps hints as well that a more powerful CNN for feature
extraction in addition to a longer training process are required for such architectures.
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Fig. 10 ROC curves of our feed-forward CNN architectures

Fig. 11 A comparison between CNN with 9.6M parameters, BiLSTM and BiRNN
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Fig. 12 ROC curves for the CNN, SVM and logistic regression classifiers

Finally, we compared our CNN 9.6M “tall” architecture to logistic regression and
SVM. This is shown in Fig. 12. We see that the deep learning approach outperforms
the traditional classifiers, though the performance of the latter is quite good, and
at very low false-positive regimes it even outperforms CNN architectures “weaker”
than CNN 9.6M “tall”.

The evaluation results are summarized in Table2. For detection rates of 75, 80,
85, 90 and 95%, the false-positive rates of the CNN 9.6M “tall” classifier are the
lowest, compared to other deep-learning approaches as well to conventional machine
learning algorithms such as the SVM or logistic regression.

5 Conclusion

In this study, we evaluated the performance of both deep learning and traditional
approaches for baby cry detection. We investigated several CNN architectures, as
well as recurrent neural networks (including LSTM) for better capturing temporal
behaviour. We studied image representations of the input audio signals and found
the logMel-filter Bank (MFB) to be an appropriate representation. We demonstrated
that by carefully choosing the kernel sizes and shapes in accordance to the MFB
representation, better performance is achieved compared to common deep learning
architectures. OurCNNclassifierwas shown to yield considerably better results com-
pared to a traditional machine learning classifiers such as SVMor logistic regression,
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especially for low false-positive rates (which is highly required in practice).Our study
demonstrates the power and advantages of deep learning when applied to audio event
detection.
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Securing Industrial Control Systems
from False Data Injection Attacks
with Convolutional Neural Networks

Sasanka Potluri, Shamim Ahmed and Christian Diedrich

Abstract Due to trends inmodern infrastructure development and usage, the attacks
on Industrial Control Systems (ICS) are inevitable. New threats and other forms of
attacks are constantly emerging to exploit vulnerabilities in system compromising
the security parameters such as Confidentiality, Integrity and Availability (CIA).
Injection attacks also termed as False Data Injection Attacks (FDIA) are the com-
plex attacks on the ICS. FDIA affects the data integrity of a packet by modifying
their payloads and are considered as an intrusion via remote access. In FDIA, attack-
ers gain access to a critical process or process parameters in ICS and forces them
to execute according to the newly injected code or command. For our research, a
process control plant from Integrated Automation laboratory was used to acquire
different parameters related to ICS. Injection attacks such as measurement injec-
tion and command injection were simulated and injected into the obtained plant
data. Convolutional Neural Networks (CNN) is used to evaluate the functionality
of identifying those injection attacks. Multiple steps such as pre-processing, feature
extraction, data transformation and image representation were performed in order to
feed the CNNwith the simulated plant data. A 3-layered fully connected CNN archi-
tecture with non-linear ReLU activation is built along with a SoftMax classification
layer for classifying the input data as a normal or an attack. A proper training of CNN
is done by checking the variance to avoid overfitting and underfitting of the network.
Performance parameters such as accuracy, recall, precision F-measure and Cohen’s
kappa coefficient were computed. CNN outperforms in the performance compared
to other deep learning approaches.
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1 Introduction

Industrial Control Systems (ICS) operate the industrial infrastructures world-wide
including electric power, water, oil/gas, pipelines, chemicals, mining, pharmaceu-
ticals transportation and manufacturing. ICS measure, control and provide a view
of the process. Typical types of ICS include Supervisory Control and Data Acqui-
sition (SCADA), Distributed Control Systems (DCS), Programmable Logic Con-
trollers (PLC), Remoter Terminal Units (RTU) and field instrumentation. These types
of systems are commonly utilized throughout the global industrial infrastructures.
The commonality of ICS and their architecture enable the International Society of
Automation (ISA) to establish one general process industry committee for cyber
security—S99 [1].

ICS cyber security was formally identified in the mid-late 1990s with the pub-
lication of Presidential Decision Directive (PDD) 63 [2]. It was at that time the
US Department of Energy’s (DOE) National Laboratories starting performing cyber
security assessments for utilities on a confidential (not classified) basis. As these
assessments were not made public, there was a little knowledge of the results
unless the utilities were willing to share their results. Despite several measures,
several attacks took place on ICS. Some of the know attacks on ICS include but not
limited to:

– Trojan attack: In 1982 it was the first know attacks on the critical infrastructure
occurred in Serbia. Trojan was used to insert malicious values in pump speeds and
valve settings which created high pressure beyond acceptable to the pipeline joints
and welds that resulted in explosion. This attack can be considered as an injection
attacks on ICS [3].

– SQLSlammer: In 2003, the SQLSlammer worm infected a SCADA system that
controlled the Davis-Besse nuclear plant in Ohio. The worm shutdown the HMI
of the supervisor SCADA systems that handled the plant’s safety systems. This
can be considered as Denial of Service (DoS) attack on ICS [4].

– Operation Ghoul: In August 2016, Kaspersky Labs unearthed a spear phishing
campaign that was targeting industrial organizations. The attack started with an
email that appeared to be coming from bank in UAE. This email is attached
with a malware named HawkEye which collects the personal information through
key strokes and clipboard data. Around 130 organizations across the globe were
impacted with this attack. This attack can be considered as probing attack on
ICS [5].

– New York Dam attack: U.S. Infrastructure online was attacked and infiltrated the
computerized controls of a New York Dam. Justice department claimed it that it
was done by an Iranian hacker. The attackers broke into the command and control
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system of the dam in 2013, through a cellular modem. Even though the attack
happened in 2013, it was only in 2016 that the cyber-attack was affirmed [6].

In 1990s, ICS cyber security awareness was very low and its perceived importance
is even lower. Generally, it was viewed as a corporate Information Technology (IT)
issue with little direct impact on powerplant or grid operation. Moreover, it was
viewedas ahinderance to ICS technology advancements. Froma security perspective,
ICS were generally isolated networks and the concept of “security by obscurity” was
alive and well. As security was not a consideration, there was little reason to question
the need for tighter system integration.

The fundamental reason for securing ICS is tomaintain themission of the systems
be it produce or deliver electricity, make or distribute gasoline, provide clean water
etc. It is not simply possible to secure ICS electronically. However, it possible to
increase the security measures and also minimize the possibility of unintentional
incidents that have already costed hundreds of millions of euros as well as number
of lives.

Traditionally, cyber security is in general viewed in the context of business IT sys-
tems and defense computer systems. Previously, ICS are frequently not viewed as
“computers” nor they often consider to be susceptible to cyber threats. Consequently,
cyber security is taught within the computer science departments focusing on tradi-
tional IT concepts. ICS generally do not utilize commercial-off-the-shelf operating
systems and their computing resources are constrained. They often use proprietary
real-time operating systems (RTOS) or embedded processors. These systems have
different operating requirements and can be impacted by cyber vulnerabilities typ-
ical of IT systems and also cyber vulnerabilities unique to ICS. ICS continues to
upgrade with advanced communication capabilities and are networked to improve
process efficiency, productivity, regulatory compliance and safety. This networking
can be within a facility or even between facilities that are continents apart. ICS are
addressing various engineering disciplines such as control systems and applications
but not in the computer security domain. When an ICS doesn’t operate properly, it
can result in impacts ranging from minor issues to catastrophic.

IT security in general deals with traditional commercial off-the-shelf hardware
and software. There is always a possibility that the existing IT vulnerabilities such
as probing can also be applicable to ICS domain. But these vulnerabilities can be
of least priority in the ICS domain. The concept of security triad: Confidentiality,
Integrity and Availability (CIA) defines the need for securing the systems (Fig. 1). In
the IT domain, cyber-attacks often focus on acquisition of proprietary information
and hence the CIA triad results in confidentiality being the most important attribute.
However, in ICS domain the attacks tend to focus on destabilization of assets and
moreover most of the attacks effect the integrity and the functionality of the ICS. This
makes the integrity and availability asmore important parameters than confidentially.
Hence the research on securing ICS must focus on the addressing the integrity and
availability as top priority followed by confidentiality.
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Fig. 1 CIA triad and their effects on the data flow

– Confidentiality: Is the property, that information is notmade available or disclosed
to unauthorized individuals, entities or processes. Interception of data leads to
violation of confidentiality.

– Integrity: Is the property of maintaining and assuring the accuracy and complete-
ness of data over its entire life-cycle or protecting information from being modi-
fied by unauthorized parties. External modification of the data leads to violation
of integrity.

– Availability: Is the property to ensure that authorized parties or entities able to
access the information or devices when needed. Interruption of data arrival or
transfer leads to violation of availability.

From the Table 1 it is clear that the securitymeasures followed by ICS are different
from IT and requires special attention. The ICS design criteria was performance and
safety and not security in the initial stage and the attackswhich violates these criteria’s
needs to be identified.

While strong concerns about security of ICS, particularly in the context of critical
national infrastructure, were expressed even in early 2000s [7]. The possible attacks
on ICS can be mainly classified into two types namely network attacks, injection
attacks.

Table 1 Priorities of security
parameters in IT versus ICS

Priority Information technology (IT) Industrial
Control Systems
(ICS)

1 Confidentiality Availability

2 Integrity Integrity

3 Availability Confidentiality
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1.1 Network Attacks

ICS is a generic term which encompasses several types of control systems and asso-
ciated technologies. Networked Control System (NCS) is a specific area in control
systems where communication networks are used to close the control loop. The ICS
architecture in Fig. 2 can be also considered as an example for NCS. The attacks
types can change significantly from one year to the next. Many of the actual attacks
involve combinations of vulnerabilities. Some common attacks on ICS can be:

– Denial of Service (DoS): An attack against ICS to stop the proper functioning of
some portion of an ICS or to effectively disable the entire system. These attacks
can target on the connected physical system or the ICS itself. DoS against phys-
ical system vary from opening or closing of valves manually and switching to
destruction of portions of the physical process that prevent operation. DoS against
the ICS target the communication links or attempt to disable programs running on
system endpoints which control the system, log data and govern communications
[8]. DoS attack mainly effects ‘availably’ which is main priority in ICS.

– Probe: It is an action taken or an object used for the purpose of learning some-
thing about the state of the network. It collects or monitors network activity and
attempt to gain access to a computer and its files. Probe attack mainly effects the
‘confidentiality’ in ICS.

A more detailed information about different types of network attacks and their
detection mechanisms can be found in [9].

Fig. 2 Typical ICS architecture
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1.2 Injection Attacks

Injection attacks also known as False Data Injection Attacks (FDIA) where attacker
gains access to a critical process or process parameters in ICS and forces the system
to execute newly introduced code or command. Injection attacks effect the ‘integrity’
of an ICS. Some common injection attacks are:

– Response Injection: ICS protocols often take the first response packet to a query
and reject subsequent responses as erroneous. This enables to craft response pack-
ets and use timing attacks to inject the responses into a network when they are
expected by a client.

– Measurement Injection: Falsified processmeasurements are injected into the ICS
in this type of attacks. The attacker simulates a process measurement such as a
water level or gas pressure increasing or decreasing which in turn generate false
actuations.

– Command Injection: False control or configuration commands are injected into
the ICS in this type of attacks. Potential impacts of this attack include interruption
of process control, interruption of device communications, unauthorized modifi-
cation of device configurations etc.

FDIA affects the data integrity of packets by modifying their payloads. These
are also considered as Intrusion via Remote Access from list of attacks mentioned
and are considered as difficult to detect. From this we can say that the FDIA attacks
were subtler than DoS while they are hard to detect and have not been thoroughly
investigated especially in modern industries.

A more detailed information about the theory of injection attacks can be found
at [10]. Different injection attacks and their detection mechanisms can be found in
[8, 11]. From this we can say that any violation of the security parameter may lead
to serious consequence and to avoid such violations a proper detection mechanism
is necessary.

2 State of the Art

FDIA in short termed as injection attacks are previously popular in smart grid or
power system applications. Most of the existing literature in identification of FDIA
is only related to power systems or smart grids. But the application of Machine
Learning (ML) and deep learning is application specific and research on securing
ICS from FDIA is significant. A literature review on different existing techniques
for identification of FDIA in ICS is discussed.

Securing modern industrial infrastructure is a key task and significant amount of
research effort is being done to analyse, detect and handle failures. Reference [12]
address the effects of different attacks on industrial control systems. A report from
Federal Office of Information Security, Germany reveals Top 10 threats and counter
measures in 2016 [13].
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Several failure detection algorithms in dynamic systems were reviewed by the
author in [14]. AComplete Survey on existing attacks and detectionmethods for false
data injection are given in [15]. Different types of FDIA attacks such as maximum
magnitude-based attack, wave based attack, positive or negative deviation attack and
mixed attacks were discussed in [16]. The impact of FDIA in control systems is
discussed in [10]. All the mentioned research concentrates on the impact of FDIA
on ICS.

Since FDIA would result in abnormal behaviour, widely researched Anomaly
Detection (AD) techniques can be applied for ICS. Due to the novel attack identi-
fication capabilities, ML and deep learning based AD techniques were exploited in
many domains [17]. AD based network intrusion detection systems are most com-
monly used techniques to identify anomalous network patterns. Many techniques
such as [18, 19] uses ML and deep learning techniques to identify the novel network
attack patterns using deep learning techniques.

Anomaly based detection to detect strong attacks that feature the injection of large
amount of spurious measurement data in very short time was provided by [20] in
the smart grid applications. Three types of injection attacks were discussed in [21]
who uses a network level water control system to provide a closed loop defence
framework to secure cyber physical systems. Single-input, single output scheme is
used to verify the performance of controlled auto-regressive moving average models
is discussed in [22].

AD techniques were also used for monitoring sensors networks and abnormal
event detection. Reference [23] mentioned the importance of anomaly detection-
based approach and used knowledge database to identify the attacks. This approach
becomes complex if the amount of sensor data to bewatched is enormous and requires
a constant update of knowledge base which is practically not possible. A Bayesian
network based approach for anomaly detection was performed in [24]. They com-
bined Bayesian networks with Kalman Filter for predicting sensor failures but they
did not consider any possible attacks on the network. Several ML algorithms were
also used to identify the network attacks. Supervised ML techniques such a feed
forward neural networks [25] and unsupervised learning techniques such as self-
organizing maps [26] were used in identifying the attacks in network traffic. The
detection accuracies of the unsupervised learning techniques were not compara-
ble with the supervised learning mechanism when the labels are available. A further
analysis is necessary to understand the outcome of the unsupervised technique which
needs through knowledge on the process.

A lot of study on FDIA on smart grids is available [27–29]. Some other techniques
such as sate estimation [30], ML [31], sparse optimization [32] were also used for
identification of attacks. Our research has identified that the impact of FDIA on ICS
needs to be addressed more precisely and the research on identification of FDIA
in industrial infrastructure is limited. A neural network based FDIA identification
approach on automation plant was discussed in [33]. Due to limited data generation
and complex simulation issues, we choose to implement our future concepts on the
process control plant data and evaluate our results. In this paper, we use the processes
control plant for data acquisition and preform AD for FDIA identification.
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3 Proposed Approach

Attack identification is domain where it is not so easy to define a specific approach. A
lot of pre-processing and feature extraction is necessary. Pre-processing techniques
such as data reduction, data cleaning and data transformation are necessary to extract
the exact information from the plant. Multiple feature extraction techniques need to
be used in order to get meaningful information from the plant data. But out of huge
list of features, proper features from statistical, mathematical and ML based needs
to be selected based on the behaviour of the obtained sensors signals. If the labelling
of obtained data is possible at least for training phase, deep learning techniques can
classify the attacks in an efficient manner. Finally, the outcome of the deep learning
AD strategy is classified into a normal or an attack class (Fig. 3).

3.1 Pre-processing

Pre-processing of data is a crucial step for various applications not only for deep learn-
ing. The effort on pre-processing depends on the characteristics of acquired data. It
involves transforming raw data into an understandable format. The data obtained
from real-world is often incomplete, inconsistent, lack certain common behaviour or
trend and is likely to contain errors and corrupted values. Pre-processing techniques
such as data cleaning, data transformation and data reduction are proven techniques
to resolve the above-mentioned issues. Data cleaning detects and corrects corrupt or
inaccurate records in the collected data. This includes removing of corrupted data
which may occur due to equipment malfunction, handling of noisy data and out-
lier removal. Data transformation includes tasks such as smoothing, normalization,
aggregation and generalization of acquired data. Normalization is the key task in
data transformation which scales the data to a specified range. Min-Max normaliza-
tion and z-score normalization techniques are most commonly used normalization
techniques. Data reduction is usually done when acquired data is too big to handle or
work with. Dimensionality reduction and aggregation are two common approaches

Fig. 3 Proposed architecture for injection attacks identification



www.manaraa.com

Securing Industrial Control Systems from False Data Injection Attacks … 205

in data reduction. A more detailed information about the data pre-processing can be
found in [34]. Pre-processing prepares the data for further processing such as feature
extraction.

3.2 Feature Extraction

Feature extraction is a key step in many ML applications such as pattern recogni-
tion and image processing. The derived features out of raw data intends to be more
informative and non-redundant facilitating the subsequent learning and generaliza-
tion steps and in some cases, leading to better human interpretations. Sometimes
feature extraction is also considered as a data reduction mechanism as discussed in
pre-processing. Different features and features extraction techniques are available.
Some common and significant feature categories are statistical features, mathemati-
cal features and features extracted through ML techniques.

Statistical Features
Statistics, termed as a branch of mathematics dealing with the collection, analysis,
interpretation and presentation of masses of numeric data. Statistical features are
thosewhich are defined and calculated through statistical analysis. Statistical analysis
theory is the frequently used method for feature extraction of data in the time domain
[35]. It can analyse according to the statistical laws when several objects and several
indices are interrelated. Statistical methods are based on forceful theory that have
lots of algorithms and can effectively analyse and process the data. Several statistical
factors exist out of which some most commonly used are mean, median, variance,
standard deviation, root means square etc. A huge list of statistical features can be
found in [36].

Mathematical Features
Mathematical methods are applied on the raw or pre-processed data to obtain the
meaningful information. Mathematical features are the most commonly extracted
features on both time series and time independent transformations. Several mathe-
matical functions from transformation theory can be used to translate the signal into
a different domain. List of mathematical features include derivate, probability and
stochastic process, estimation theory, numerical methods etc.

Machine Learning Based Features
ML techniques are not only used to perform classification or clustering but can also
be used for feature extraction from raw data and complex data structures. The fea-
tures such as efficient data compression and data reduction are performed with ML
techniques for feature extraction. One good example for ML based feature extrac-
tion is Principal Component Analysis (PCA). Even deep learning techniques such
as autoencoders and Boltzmann machines are popular for feature extraction. ML
techniques are also used to extract features out of features i.e. the extracted features
from other techniques or even from ML techniques can be again given to ML based
feature extraction to get much refined or complex features.
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The set of features extracted from raw data differs from the network packets and
the choice of features extracted such as statistical, mathematical or ML based needs
to be made based on the application and acquired data.

3.3 Deep Learning

Deep learning is a ML technique combining both supervised and unsupervised tech-
niques inspired from human brain. Human brain has got multiple levels of repre-
sentations with simple features at lower levels and more abstract features at higher
levels. Similarly, deep learning consists of multiple hidden layers with initial lay-
ers representing the information at lower levels and the final layers representing the
information in an abstract format. Some common deep learning architectures include
Stacked Auto-Encoders (SAE), Deep Belief Networks (DBN), Convolutional Neural
Networks (CNN) etc. CNN’s are mostly used in image processing applications and
requires huge dataset and training time. But the implementation of CNN for AD is
novel.

Convolutional-Neural Networks
Convolutional Neural Networks (CNN) is one category of deep learning algorithm
and are considered as an extension to the traditional feed forward neural networks.
CNN have proven very effective in many application domains such as image recog-
nition and classification, speech processing applications etc. Its effectiveness has
been successfully proven in tasks such as identifying faces, objects and traffic sign
detection mainly used in robotics and self-driving cars.

Fourmain operations ofCNNcomprise ofConvolution layer, non-linear activation
function such as Rectified Linear Unit (ReLU), pooling layer, and fully connected
layer (classification).

– Convolution Layer: As the name itself indicates, the CNN got its name from
convolution operations. The main task of convolution is to extract features from
the input image. Convolution operation preserves the spatial relationship between
pixels by learning image features using filter or a kernel. The output image out
of convolution operation is termed as ‘Activation Map’ or ‘Convolved Feature’
or ‘Featured Map’. The values of the filter or Kernel are updated automatically
during the training process of CNN to learn the features of an image in a better way.
The size of feature map is controlled by depth (corresponding to number of filters
we use), stride (Number of pixels by which we slide the filter) and zero padding
(padding images with zeros at the border). If the image is padded with zeros at
the border then it is termed as wide convolution and if not, it is considered as a
narrow convolution. More detailed information on convolution layer is discussed
in [37]. The process of convolution operation and feature extraction from an image
is show in Fig. 4.

– Nonlinear Activation ReLU: After every convolution operation, before gener-
ating the feature map, additional nonlinear function such as ReLU is being used



www.manaraa.com

Securing Industrial Control Systems from False Data Injection Attacks … 207

Fig. 4 Convolution process for feature extraction from an image

in CNN. ReLU stands for Rectified Linear Unit and is a non-linear operation. It
is an element wise operation and replaces all negative pixel values in the feature
map with zero. ReLU introduces the non-linear behavior to the CNN and tradi-
tional convolution operation is linear. Other non-linear activation functions such
as tanh and sigmoid can also be used instead of ReLU. More detailed information
on ReLU activation and other activation functions are discussed in [38].

f (x) = max(0, x) (1)

– Pooling Layer: Spatial pooling also termed as subsampling or down-sampling
reduces the dimensionality of each feature map but retains the most important
information out of the feature map. Spatial pooling can be of different types such
asMax, Average, Sum etc.Max pooling has shown to work better in many applica-
tions. More detailed information on pooling layer is discussed in [39]. An example
of max pooling is shown in Fig. 5. Where the operation is done through a filter
size of 2 × 2 along with a stride value of two.

– Fully Connected Layer: This is a traditional multi-layer perceptron that uses a
softmax activation function in the output layer. The term fully connected implies
that every neuron in the previous layer is connected to every neuron in the next
layer. The output of the convolution and pooling layers represent the high-level
features of the input image. The fully connected layer uses these features for
classifying the input image into various classes based on the training dataset.
More detailed information on fully connected layer is discussed in [40].

Combining the above-mentioned key parameters forms theCNN. The convolution
and pooling layers act as a feature extraction mechanism out of an image while the
fully connected layer act as a classifier.More detailed discussion onCNN is discussed
in [41]. Figure 6 will give a detailed overview of the above-mentioned concepts in
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Fig. 5 Subsampling from rectified feature map

Fig. 6 CNN architecture for proposed mechanism

relation to our application of CNN for attack detection. The detailed functionality of
the implemented CNN model is discussed later.

4 Dataset

To analyse the functionality of the developed model, a deep learning based secu-
rity strategy is developed with a process control use case. The chair of “Integrated
Automation” at Otto-von-Guericke University Magdeburg has a Process Control
Plant in the Automation Laboratory. This plant was built by Festo Didactic and
termed as MPS PA compact workstation with level, flow rate, pressure and tempera-
ture controlled system [42]. The following Fig. 7 gives an overview about the picture
of the plant and the P&ID diagram of the plant.

Using a corresponding controller such as Samson Trovsi 6495, the level and
flowrate-controlled system can be set up as a cascade control system. The level of
each tank is measured via ultrasound sensors and the flow rate between the tanks are
measured via flow sensors. Pressure sensor and temperature sensor also provided but
they are not used for this experiment. A two-way ball valve with a pneumatic process
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Fig. 7 Process control plant and P&ID diagram of the plant

actuator which connects the elevated tank and lower reservoir is used to control the
manipulated variable. The pump is controlled via speed adjustment. The level sensor
values as well as the pump actuation values from the plant are used for the evaluation.
Simulated measurement injection attacks were injected in the level sensor data as
well as command injection attacks were injected in pump data.

The attackswere simulated very effectively that they are hard to identify in general.
For example, Fig. 8a represents the filtered tank level data and Fig. 8b represents the
attack injected signal. We can see a specific difference between the two signals but it
is hard to identify by just looking at Fig. 8b that there are some attacks injected. The
injected attacks will be in normal range of the signal but are inserted in a specific
pattern such that the values are complete opposite to the normal behaviour but within
the normal range and only through specific features the difference is identified. Below
figures shows the filtered signal and attacks inserted signal for both measurement
injection and command injection (Figs. 8 and 9).

Fig. 8 Tank level sensor data a Filtered signal b Attack Injected Signal
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Fig. 9 Pump data a Filtered signal b Attack injected signal

The level sensor data is the simulated data from the level sensors of twin tank
system as it is mentioned before. The level sensors are used to read the liquid level
in the tank constantly for proper function of the two-tank system but this system
behaviour can be manipulated with fault measurement injection to the sensor data
by the attackers. Suppose, fault measurement data has been injected to the level sen-
sor data then the scenario could be like this: due to fault measurement injection the
sensor would read different level of liquid than the actual and caused the malfunc-
tioning of the system. This malfunctioning could bring a great damage to the system
and environment surrounding the system. After obtaining the sensors signals (with
injections) the proposed architecture is implemented on the plant data and CNN is
applied for attack classification.

5 Implementation

The flow diagram of implementing deep learning based AD for identifying FDIA in
ICS is depicted in Fig. 10.

5.1 Pre-Processing

As the data obtained from raw sensors is very basic, it is hard to understand the attack
patterns from the sensor data alone. Hence, some basic features through statistical
and mathematical methods. In total 11 features are extracted for both level sensor
and pump data. The obtained features are represented in following Figs. 11, 12, 13,
14, 15 and 16.

After extracting the respective features out of the sensor data, the features need
to be normalized for better learning. The data has been normalized using Eq. 2 and
after on the normalized value has been discretized into 20 intervals using a similar
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Fig. 10 Flow diagram of implemented CNN model from proposed architecture

Fig. 11 Extracted level sensor features (Mean, Std, Varience & Median)

discretizer’s like Fig. 17. The used discretizer in the figure has a standard scaler of
value 0.1 but here it has been used of value 0.05.Hence, it has divided into 20 intervals
instead of 10. These 20 intervals have been assigned after on with 20 different bits
for binary extraction.

Xnew = X − Xmin

Xmax − Xmin
(2)
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Fig. 12 Extracted level sensor features (RMS, Mean-1st & 2nd differential and Max)

Fig. 13 Extracted level sensor features (Min, Peak to RMS & Kurtosis)

The first four listed features above are shown in Fig. 11.
In Fig. 12 the extracted features using RMS, first differential mean, second dif-

ferential mean and maximum value are shown below.
The extracted features namely minimum, peak to RMS and kurtosis are repre-

sented in Fig. 13.
The enlisted features above are also extracted from the pump sensor data and they

are represented in the following Figures.



www.manaraa.com

Securing Industrial Control Systems from False Data Injection Attacks … 213

Fig. 14 Extracted pump sensor features (Mean, Std, Varience & Median)

Fig. 15 Extracted pump sensor features (RMS, Mean-1st & 2nd differential and Max)

The first four listed features of pump sensor data are shown in Fig. 14.
In Fig. 15 the extracted features using RMS, first differential mean, second dif-

ferential mean and maximum value are shown below.
The remaining three extracted features of pump sensor data is shown in Fig. 16.
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Fig. 16 Extracted pump sensor features (Min, Peak to RMS & Kurtosis)

Fig. 17 A discretise mechanism for binary extraction

5.2 Image Representation

The simulated sensor data has been converted into 240 bits binary vector by assigning
20 bits to each of 11 extracted features via the discritizer. Now, each 8 bits of 240
bits have been converted into grayscale pixels and then the pixels are reshaped into
6×6 matrix where, the vacant six pixels are filled with zeros. In order to create 8×8
pixel matrix the generated pixel matrix is padded with zeros circularly as shown in
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Fig. 18 Image representation of sensor data

Fig. 18. Finally, the same 8× 8 pixel matrix has been sent to the red, green and blue
channels to represent converted sensor data as RGB images and prepared them for
training and testing purposes.

5.3 Training of CNN

The Matlab Neural Network (NN) toolbox has been updated recently for deep learn-
ing algorithms [43]. The Matlab release of 2017 [44] and beyond have offered mod-
ern deep neural networks models especially for image classification or recognition
namely: facial recognition, motion detection, autonomous driving, pedestrian detec-
tion and autonomous parking. The NN toolbox could be used to create and intercon-
nect the layers of deep NN by using Matlab commands. For example, Matlab has
been offered few pre-trained NNs for deep learning which has made it easier to use
deep learning algorithms, it could be used having primary knowledge on NN and
computer vision algorithms.

Some basic parameters needs to be configured while training the CNN algorithm
are follows:

– Input Image Size (MNC): It is the size of the input image where, M is the height
of the image, N is the width of the image an C is the number of channels such as:
for grayscale image C = 1 and for color image C = 3.

– Filter_Size: It is declaration of the size of filters to use. For instance, if the value
is assigned as 3 then it indicates that the filter height and width are 3.

– Number_of_Filters: It is the number of filters to use for convolution operation.
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– Pooling_Size: It is the size of the rectangular pooling map. For example, if the
value is assigned as 2 then the pooling map would be a square of size 2.

– Stride_Value: ‘Stride’ is a name value pair argument and the step size of filtering
is defined by it.

– Number_of_Classes: It is the number of input category Such as for intrusion
detection generally there are two attack category namely normal and attack there-
fore, the number of classes must be 2 in this case.

The configured CNNmodel is then trained for the purpose of attack classification.
Where, ‘sgdm’ stochastic gradient decent method is used for learning approach. The
learning rate has been set as ‘piecewise’ i.e. with initial learning rate 0.01 and would
decrease by a factor of 0.1. ‘MaxEpochs is set to 20’ which represents the number
of times the whole training data is sent for training iterations. The training dataset
is split to training as well as validation. ‘Validation Frequency is set to 300’ such
that after 300 iterations the validation of the trained network is made, the value after
that many times of iterations the results would be validated. The validation patience
has been set to 5 for reducing the training cost. It means, if the validation accuracy
is not changed for five validation periods in a row then the training will be stopped
resulting in model not getting overfitted (Fig. 19).

Pertained networks like Inception-v3, ResNet-50, ResNet-101, GoogLeNet,
AlexNet, VGG-16, and VGG-19 are available. These networks can be used by cus-
tomizing their network layers according to the need. Furthermore, it also offers
training the network on both CPU and GPU environments in Matlab.

Fig. 19 Training validation curve of trained CNN model



www.manaraa.com

Securing Industrial Control Systems from False Data Injection Attacks … 217

6 Results and Discussion

The evaluation of the results of the trained model are done based on the following
parameters represented in Fig. 20. The performance assessment for both the training
and testing of proposed models are done using the parameters True Positive (TP),
True Negative (TN), False Positive (FP) and False Negative (FN). The presented
confusion matrix in the Fig. 20 is for two class model.

The performance metrics used to assess the performance of the proposed
model are:

– Accuracy: The number of detected samples correctly over the total number of
samples, which is represented in percentages.

– Precision (P): The precision is mentioned for Positive Predictive Value (PPV) and
it is calculated in percentage via dividing the TP by the summation of TP and FP
as given in Eq. 3.

P = T P

T P + FP
× 100 (3)

– Recall (R): The recall is mentioned as the TP rate and it is calculated in percentage
via TP by the summation of TP and FN as given in Eq. 4.

R = T P

T P + FN
× 100 (4)

Fig. 20 Parameters of
confusion matrix
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– F-Measure: The F-Measure is a measurement for representing the test accuracy
and mentioned as harmonic mean of values P and R and can be calculated by
using the Eq. 5.

F = 2× P × R

P + R
(5)

– Cohen’s kappa coefficient (k): The Cohen’s kappa coefficient is a statistical mea-
sure of inter-rater reliability or the agreement that is used to assess qualitative
items. representing the test accuracy and mentioned as harmonic mean of values
P and R and can be calculated by using the Eq. 6.

k = po − pe
1− pe

(6)

where po is the relative observed agreement among ratters (similar to accuracy)
and pe is the hypothetical probability of chance agreement, using observed data
to calculate the probabilities of each observer randomly seeing each category.

p0 = T P + FP

T P + FN + T N + FP
(7)

pe = pyes + pno (8)

pyes = T P + FN

T P + FN + T N + FP
(9)

pno = T N + FP

T P + FN + T N + FP
(10)

The outcome of the performance metrics evaluation is given in Tables 2, 3, 4, 5, 6,
7 and 8.

Table 2 CNN accuracy for
attack identification on level
sensor data

Type of
framework

Classes Overall detection
rate (%)Normal (%) Attack (%)

CNN 97.50 94.90 96.70

Table 3 Performance
metrics evaluation of CNN
model on attack identification
on level sensor data

Parameter Normal (%) Attack (%)

Precision 97.74 94.37

Recall 97.52 94.86

F-Measure 97.63 94.61

Cohen’s kappa coefficient 0.96 0.93
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Table 4 CNN accuracy for
attack identification on pump
data

Type of
framework

Classes Overall detection
rate (%)Normal (%) Attack (%)

CNN 95.90 92.70 94.90

Table 5 Perforamnce
metrics evaluation of CNN
model on attack identification
on pump data

Parameter Normal (%) Attack (%)

Precision 96.90 90.40

Recall 95.87 92.69

F-Measure 96.38 91.53

Cohen’s kappa coefficient 0.94 0.90

Table 6 Training and testing
times of CNN on GeForce
GTX960M GPU with 4 GB
on board memory

Train
time (s)

Training
samples

Test
time (s)

Testing
samples

Level sensor
data

184.32 17289 2.12 4400

Pump data 278.14 17289 2.28 4400

Table 7 Performance
comparison of CNN with
other deep learning
approaches of attack
identification on level sensor
data

Type of
framework

Classes Overall detection
rate (%)Normal (%) Attack (%)

CNN 97.50 94.90 96.70

SAE 97.44 96.69 97.18

DBN 86.39 88.51 87.11

7 Conclusion and Future Works

This paper mainly concerns about the development of deep learning-based security
strategy for securing ICS against FDIA. For this purpose, CNN is chosen as a deep
learning algorithm for classification of normal and attack classes. Entire implemen-
tation was implemented in MATLAB. A process control plant from Institute for
Automation Engineering is used to generate the data. These data are injected with

Table 8 Performance
comparison of CNN with
other deep learning
approaches of attack
identification on pump data

Type of
framework

Classes Overall detection
rate (%)Normal (%) Attack (%)

CNN 95.90 92.70 94.90

SAE 97.07 94.11 96.09

DBN 97.45 57.05 84.13
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FDIA in a strategical manner. From raw sensor data, some statistical and mathemati-
cal features are extracted. These features are later converted to image format to train
the CNN model. Different parameters of CNN model are discussed and our choice
of those parameters is justified. Based on the validation parameters and patience in
training the network avoids the proposed model from overfitting. Finally, the perfor-
mance of the proposed CNN model is evaluated with the metrics such as accuracy,
precision, F-measure, recall and Cohen’s kappa coefficient. The results look promis-
ing and ensures the capabilities of CNN for using them as a security strategy against
cyber threats on ICS. The performance results of the CNNare comparedwith our pre-
vious results with other deep learning approaches such as SAE and DBN. Obviously,
CNN outperformance DBN in terms of detecting both normal and attack but com-
petes almost equivalently with SAE. But this is purely dependent on the application
and generated dataset. After observing the training time on CPU which is more than
12 h, the entire training process of CNN is shifted onto the GPU and the training time
shows that the there is a significant acceleration of the training process on the GPU.

In future, huge datasets and more attack types are necessary to evaluate the per-
formance more in detail. A combination of multiple feature extraction techniques
especially ML based feature extraction is under progress. A combination of different
deep learning techniques and ML techniques is under plan to improve the efficiency
of the security mechanism. Use of other deep learning approaches such as Recurrent
Neural Networks (RNN) are in progress.
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Tugba Erpek, Timothy J. O’Shea, Yalin E. Sagduyu, Yi Shi
and T. Charles Clancy

Abstract Existing communication systems exhibit inherent limitations in translat-
ing theory to practice when handling the complexity of optimization for emerging
wireless applications with high degrees of freedom. Deep learning has a strong
potential to overcome this challenge via data-driven solutions and improve the per-
formance of wireless systems in utilizing limited spectrum resources. In this chapter,
we first describe how deep learning is used to design an end-to-end communication
system using autoencoders. This flexible design effectively captures channel impair-
ments and optimizes transmitter and receiver operations jointly in single-antenna,
multiple-antenna, and multiuser communications. Next, we present the benefits of
deep learning in spectrum situation awareness ranging from channel modeling and
estimation to signal detection and classification tasks. Deep learning improves the
performancewhen themodel-basedmethods fail. Finally, we discuss howdeep learn-
ing applies to wireless communication security. In this context, adversarial machine
learning provides novel means to launch and defend against wireless attacks. These
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applications demonstrate the power of deep learning in providing novel means to
design, optimize, adapt, and secure wireless communications.

Keywords Deep learning · Wireless systems · Physical layer · End-to-end
communication · Signal detection and classification · Wireless security

1 Introduction

It is of paramount importance to deliver information in wireless medium from one
point to another quickly, reliably, and securely.Wireless communications is a field of
rich expert knowledge that involves designing waveforms (e.g., long-term evolution
(LTE) and fifth generation mobile communications systems (5G)), modeling chan-
nels (e.g., multipath fading), handling interference (e.g., jamming) and traffic (e.g.,
network congestion) effects, compensating for radio hardware imperfections (e.g.,
RF front end non-linearity), developing communication chains (i.e., transmitter and
receiver), recovering distorted symbols and bits (e.g., forward error correction), and
supportingwireless security (e.g., jammer detection). The design and implementation
of conventional communication systems are built upon strong probabilistic analytic
models and assumptions. However, existing communication theories exhibit strong
limitations in utilizing limited spectrum resources and handling the complexity of
optimization for emerging wireless applications (such as spectrum sharing, multime-
dia, Internet of Things (IoT), virtual and augmented reality), each with high degrees
of freedom. Instead of following a rigid design, new generations of wireless sys-
tems empowered by cognitive radio [1] can learn from spectrum data, and optimize
their spectrum utilization to enhance their performance. These smart communication
systems rely on various detection, classification, and prediction tasks such as signal
detection and signal type identification in spectrum sensing to increase situational
awareness. To achieve the tasks set forth in this vision, machine learning (especially
deep learning) provides powerful automated means for communication systems to
learn from spectrum data and adapt to spectrum dynamics [2].

Wireless communications combine various waveform, channel, traffic, and inter-
ference effects, each with its own complex structures that quickly change over time,
as illustrated in Fig. 1. The data underlying wireless communications come in large

Fig. 1 Example spectrum data plots: 900/1800MHz cellular and 2.4GHz industrial, scientific and
medical (ISM) radio bands
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volumes and at high rates, e.g., gigabits per second in 5G, and is subject to harsh
interference and various security threats due to the shared nature of wireless medium.
Traditional modeling and machine learning techniques often fall short of capturing
the delicate relationship between highly complex spectrum data and communication
design, while deep learning has emerged as a viable means to meet data rate, speed,
reliability, and security requirements of wireless communication systems. One moti-
vating example in this regard is from signal classification where a receiver needs
to classify the received signals [3] based on waveform features, e.g., modulation
used at the transmitter that adds the information to the carrier signal by varying its
properties (e.g., amplitude, frequency, or phase). This signal classification task is
essential in dynamic spectrum access (DSA) where a transmitter (secondary user)
needs to first identify signals of primary users (such as TV broadcast networks) who
has the license to operate on that frequency and then avoid interference with them
(by not transmitting at the same time on the same frequency). It was shown that deep
learning based on convolutional neural networks (CNN) achieves significantly higher
accuracy in signal classification compared to feature-based classifiers where signal
features such as the bandwidth or second-order statistics are used to discriminate
different signals [3].

This chapter presents methodologies and algorithms to apply deep learning to
wireless communications in three main areas.

1. Deep learning to design end-to-end (physical layer) communication chain
(Sect. 2).

2. Deep learning to support spectrum situation awareness (Sect. 3).
3. Deep learning forwireless security to launch and defendwireless attacks (Sect. 4).

In Sect. 2, we formulate an end-to-end physical layer communications chain
(transmitter and receiver) as an autoencoder that is based on two deep neural net-
works (DNNs), namely an encoder for the transmitter functionalities such asmodula-
tion and coding, and a decoder for the receiver functionalities such as demodulation
and decoding. By incorporating the channel impairments in the design process of
autoencoder, we demonstrate the performance gains over conventional communica-
tion schemes. In Sect. 3, we present how to use different DNNs such as feedforward,
convolutional, and recurrent neural networks for a variety of spectrum awareness
applications ranging from channel modeling and estimation to spectrum sensing and
signal classification. To support fast response to spectrum changes, we discuss the
use of autoencoder to extract latent features from wireless communications data and
the use of generative adversarial networks (GANs) for spectrum data augmentation
to shorten spectrum sensing period. Due to the open and broadcast nature of wireless
medium, wireless communications are prone to various attacks such as jamming. In
Sect. 4, we present emerging techniques built upon adversarial deep learning to gain
new insights on how to attack wireless communication systems more intelligently
compared to conventional wireless attack such as jamming data transmissions. We
also discuss a defense mechanism where the adversary can be fooled when adver-
sarial deep learning is applied by the wireless system itself.
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2 Deep Learning for End-to-End Communication Chain

The fundamental problem of communication systems is to transmit a message such
as a bit stream from a transmitter using radio waves and reproduce it either exactly or
approximately at a receiver [4]. The focus in this section is on the physical layer of the
Open Systems Interconnection (OSI) model. Conventional communication systems
split signal processing into a chain of multiple independent blocks separately at the
transmitter and receiver, and optimize each block individually for a different function-
ality. Figure2 shows the block diagram of a conventional communication system.
The source encoder compresses the input data and removes redundancy. Channel
encoder adds redundancy on the output of the source encoder in a controlled way
to cope with the negative effects of the communication medium. Modulator block
changes the signal characteristics based on the desired data rate and received signal
level at the receiver (if adaptive modulation is used at the transmitter). The commu-
nication channel distorts and attenuates the transmitted signal. Furthermore, noise is
added to the signal at the receiver due to the receiver hardware impairments. Each
communication block at the transmitter prepares the signal to the negative effects
of the communication medium and receiver noise while still trying to maximize the
system efficiency. These operations are reversed at the receiver in the same order to
reconstruct the information sent by the transmitter. This approach has led to efficient,
versatile, and controllable communication systems that we have today with individ-
ually optimized processing blocks. However, this individual optimization process
does not necessarily optimize the overall communication system. For example, the
separation of source and channel coding (at the physical layer) is known to be sub-
optimal [5]. The benefit in joint design of communication blocks is not limited to
physical layer but spans other layers such as medium access control at link layer
and routing at network layer [6]. Motivated by this flexible design paradigm, deep
learning provides automated means to treat multiple communications blocks at the
transmitter and the receiver jointly by training them as combinations of DNNs.

MIMO systems improve spectral efficiency by using multiple antennas at both
transmitter and receiver to increase the communication range and data rate. Dif-
ferent signals are transmitted from each antenna at the same frequency. Then each
antenna at the receiver receives superposition (namely, interference) of the signals
from transmitter antennas in addition to the channel impairments (also observed
for single antenna systems). The traditional algorithms developed for MIMO signal
detection are iterative reconstruction approaches and their computational complex-
ity is impractical for many fast-paced applications that require effective and fast
signal processing to provide high data rates [7, 8]. Model-driven MIMO detection
techniques can be applied to optimize the trainable parameters with deep learning
and improve the detection performance. As an example, a MIMO detector was built
in [7] by unfolding a projected gradient descent method. The deep learning archi-
tecture used a compressed sufficient statistic as an input in this scheme. Another
model-driven deep learning network was used in [9] for the orthogonal approximate
message passing algorithm.
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Fig. 2 Conventional communication system block diagram

Multiuser communication systems, where multiple transmitters and/or receivers
communicate at the same time on the same frequency, allow efficient use of the spec-
trum, e.g., in an interference channel (IC), multiple transmitters communicate with
their intended receivers on the same channel. The signals received from unintended
transmitters introduce additional interference which needs to be eliminated with pre-
coding at the transmitters and signal processing at the receivers. The capacity region
for IC in weak, strong and very strong interference regimes has been studied exten-
sively [10–12]. Non-orthogonal multiple access (NOMA) has emerged to improve
the spectral efficiency by allowing some degree of interference at receivers that can be
efficiently controlled across interference regimes [13]. However, the computational
complexity of such capacity-achieving schemes is typically high to be realized in
practical systems.

Recently, deep learning-based end-to-end communication systems have been
developed for single antenna [14, 15], multiple antenna [16], and multiuser [14,
17] systems to improve the performance of the traditional approaches by jointly
optimizing the transmitter and the receiver as an autoencoder instead of optimiz-
ing individual modules both at the transmitter and receiver. Autoencoder is a DNN
that consists of an encoder that learns a (latent) representation of the given data
and a decoder that reconstructs the input data from the encoded data [18]. In this
setting, joint modulation and coding at the transmitter corresponds to the encoder,
and joint decoding and demodulation at the receiver corresponds to the decoder. The
joint optimization includes multiple transmitter and receivers for the multiuser case
to learn and eliminate the additional interference caused by multiple transmitters.
The following sections will present the autoencoder-based communication system
implementations and their performance evaluation.
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2.1 Single Antenna Systems

A communication system consists of a transmitter, a receiver, and channel that car-
ries information from the transmitter to the receiver. A fundamental new way to
think about communication system design is to formulate it as an end-to-end recon-
struction task that seeks to jointly optimize transmitter and receiver components in
a single process using autoencoders [14]. As in the conventional communication
systems, the transmitter wants to communicate one out of M possible messages
s ∈ M = {1, 2, . . . , M} to the receiver making n discrete uses of the channel. It
applies the modulation process f : M �→ R

n to the message s to generate the trans-
mitted signal x = f (s) ∈ R

n . The input symbols from a discrete alphabet aremapped
to the points (complex numbers) on the constellation diagram as part of digital mod-
ulation. The digital modulation schemes for conventional communication systems
have pre-defined constellation diagrams. The symbols are constructed by grouping
the input bits based on the desired data rate. The desired data rate determines the
constellation scheme to be used. Figure3 shows the constellation diagrams for the
binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), and 16-
quadrature amplitude modulation (QAM) as example of digital modulation schemes
and their symbol mapping. Linear decision regions make the decoding task relatively
simpler at the receiver. For the autoencoder system, the output constellation diagrams
are not pre-defined. They are optimized based on the desired performance metric,
i.e., the symbol error rate to be reduced at the receiver.

The hardware of the transmitter imposes an energy constraint ‖x‖22 ≤ n, ampli-
tude constraint |xi | ≤ 1∀i , or an average power constraint E [|xi |2

] ≤ 1∀i on x. The
data rate of this communication system is calculated as R = k/n [bit/channel use],
where k = log2(M) is the number of input bits and n can be considered as the output
of a forward error correction scheme where it includes both the input bits and redun-
dant bits to mitigate the channel effects. As a result, the notation (n,k) means that
a communication system sends one out of M = 2k messages (i.e., k bits) through n
channel uses. The communication channel is described by the conditional probability
density function p(y|x), where y ∈ R

n denotes the received signal. Upon reception

Fig. 3 Example of digital modulation constellations a BPSK, b QPSK, c 16-QAM
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of y, the receiver applies the transformation g : Rn �→ M to produce the estimate ŝ
of the transmitted message s. Mapping x to y is optimized in a channel autoencoder
so that the transmitted message can be recovered with a small probability of error.
In other words, autoencoders used in many other deep learning application areas
typically remove redundancy from input data by compressing it; however, the chan-
nel autoencoder adds controlled redundancy to learn an intermediate representation
robust to channel perturbations.

The block diagram of the channel autoencoder scheme is shown in Fig. 4. The
input symbol is represented as a one-hot vector. The transmitter consists of a feed-
forward neural network (FNN) with multiple dense layers. The output of the last
dense layer is reshaped to have two values that represent complex numbers with real
(in-phase, I) and imaginary (quadrature, Q) parts for each modulated input symbol.
The normalization layer ensures that physical constraints on x are met. The channel
is represented by an additive noise layer with a fixed variance β = (2REb/N0)

−1,
where Eb/N0 denotes the energy per bit (Eb) to noise power spectral density (N0)
ratio. The receiver is also implemented as an FNN. Its last layer uses a softmax acti-
vation whose output p ∈ (0, 1)M is a probability vector over all possible messages.
The index of the element of p with the highest probability is selected as the decoded
message. The autoencoder is trained using stochastic gradient descent (SGD) algo-
rithm on the set of all possible messages s ∈ M using the well suited categorical
cross-entropy loss function between 1s and p. The noise value changes in every
training instance. Noise layer is used in the forward pass to distort the transmitted
signal. It is ignored in the backward pass.

Figure5a compares the block error rate (BLER), i.e., Pr(ŝ �= s), of a communi-
cation system employing BPSK modulation and a Hamming (7, 4) code with either
binary hard-decision decoding or maximum likelihood decoding (MLD) against
the BLER achieved by the trained autoencoder (7, 4) (with fixed energy constraint
‖x‖22 = n). Autoencoder is trained at Eb/N0 = 7dB using Adam [19] optimizer with
learning rate 0.001. Both systems operate at rate R = 4/7. The BLER of uncoded
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sented as an autoencoder. The input s is encoded as a one-hot vector, the output is a probability
distribution over all possible messages. The message with the highest probability is selected as
output ŝ
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Fig. 5 BLER versus Eb/N0 for the autoencoder and several baseline communication schemes [14]

BPSK (4, 4) is also included for comparison. The autoencoder learns encoder and
decoder functions without any prior knowledge that achieve the same performance
as the Hamming (7, 4) code with MLD. Table1 shows the number of neural network
layers used at the encoder (transmitter) and decoder (receiver) of the autoencoder
system.

Figure5b shows the performance curves for (8, 8) and (2, 2) communication
systems when R = 1. The autoencoder achieves the same BLER as uncoded BPSK
for (2, 2) system and it outperforms the latter for (8, 8) system, implying that it has
learned a joint coding and modulation scheme, such that a coding gain is achieved.
Figure6 shows the constellations x of all messages for different values of (n, k)
as complex constellation points, i.e., the x- and y-axes correspond to the first and
second transmitted symbols, respectively. Figure6a shows the simple (2, 2) system
that converges rapidly to a classical QPSK constellation (see Fig. 3b) with some
arbitrary rotation. Similarly, Fig. 6b shows a (4, 2) system that leads to a rotated
16-PSK constellation where each constellation point has the same amplitude. Once
an average power normalization is used instead of a fixed energy constraint, the
constellation plot results in amixed pentagonal/hexagonal grid arrangement as shown
in Fig. 6c. This diagram can be compared to the 16-QAM constellation as shown in
Fig. 3c.

Table 1 Layout of the autoencoder used in Fig. 5a and b

Transmitter Receiver

Layer Output dimensions Layer Output dimensions

Input M Input n

Dense + ReLU M Dense + ReLU M

Dense + linear n Dense + softmax M
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(a) (b) (c)

Fig. 6 Constellations produced by autoencoders using parameters (n, k): a (2, 2) b (2, 4), c (2, 4)
with average power constraint

In addition to promising results for the channel autoencoder implementation with
simulated channels, over-the-air transmissions have also verified the feasibility of
building, training, and running a complete communication system solely composed
of DNNs using unsynchronized off-the-shelf software-defined radios (SDRs) and
open-source deep learning software libraries [15]. Hardware implementation intro-
duces additional challenges to the system such as the unknown channel transfer
function. The autoencoder concept works when there is a differentiable mathemati-
cal expression of the channel’s transfer function for each training example. A two-
step training strategy is used to overcome this issue where the autoencoder is first
trained with a stochastic channel model that closely approximates the real channel
model. During operation time, the receiver’s DNN parameters are fine-tuned using
transfer learning approach. A comparison of the BLER performance of the channel
autoencoder system implemented on the SDR platform with that of a conventional
communication scheme shows competitive performance close to 1dBwithout exten-
sive hyperparameter tuning [15].

Transfer learning approach still provides suboptimal performance for the channel
autoencoder since the channel model used during the training differs from the one
experienced during operation time. A training algorithm that iterates between the
supervised training of the receiver and reinforcement learning-based training of the
transmitter was developed in [20] for different channel models including AWGN and
Rayleigh block-fading (RBF) channels.

2.2 Multiple Antenna Systems

MIMO wireless systems are widely used today in cellular and wireless local area
network (LAN) communications. A MIMO system exploits multipath propagation
through multiple antennas at the transmitter and receiver to achieve different types
of gains including beamforming, spatial diversity, spatial multiplexing gains, and
interference reduction. Spatial diversity is used to increase coverage and robustness



www.manaraa.com

232 T. Erpek et al.

by using space-time block codes (STBC) [21, 22]. Same information is precoded
and transmitted in multiple time slots in this approach. Spatial multiplexing is used
to increase the throughput by sending different symbols from each antenna element
[23, 24]. In a closed-loop system, the receiver performs channel estimation and
sends this channel state information (CSI) back to the transmitter. The CSI is used
at the transmitter to precode the signal due to interference created by the additional
antenna elements operating at the same frequency. The developed MIMO schemes
for both spatial diversity and multiplexing rely on analytically obtained (typically
fixed) precoding and decoding schemes.

Deep learning has been used for MIMO detection at the receivers to improve the
performance using model-driven deep learning networks [7, 9, 25]. In Sect. 2.1, the
channel autoencoderwas used to train a communication systemwith a single antenna.
The autoencoder concept is also applied to the MIMO systems where many MIMO
tasks are combined into a single end-to-end encoding and decoding process which
can be jointly optimized to minimize symbol error rate (SER) for specific channel
conditions [16]. AMIMOautoencoder systemwith Nt antennas at the transmitter and
Nr antennas at the receiver is shown in Fig. 7. Symbols si , i = 1, . . . , Nt , are inputs to
the communication system. Each symbol has k bits of information. By varying k, the
data rate of the autoencoder system can be adjusted. The input symbols are combined
and represented with a single integer in the range of [0, 2kNt ) as an input to the
encoder (transmitter) and are encoded to form Nt parallel complex transmit streams,
xi, as output, where i = 1, . . . , Nt . There are different channel models developed
for MIMO systems such as [26]. A Rayleigh fading channel is used in this example
which leads to a full rank channel matrix. In this case, full benefit is achieved from
the MIMO system since the received signal paths for each antenna are uncorrelated.
The signal received at the decoder (receiver) can be modeled as y = hx + n where
h is an Nr × Nt channel matrix with circularly symmetric complex Gaussian entries
of zero mean and unit variance, x is an Nt × 1 vector with modulated symbols
with an average power constraint of P such that E[x∗x] ≤ P where x∗ denotes the
Hermitian of x, and n is an (Nr × 1) vector which is the AWGN at the receiver with
E[nn∗] = σ 2INr×Nr . Estimated symbols ŝi , where i = 1, . . . , Nr , are the outputs.
Every modulated symbol at the transmitter corresponds to a single discrete use of
the channel and the communication rate of the system is min(Nt , Nr ) · k bits.

The autoencoder is trained using channel realizations drawn from Rayleigh dis-
tribution. The transmitter communicates one out of 2k possible messages from each
antenna. The transmitter is designed using an FNN architecture. The input symbols
go through an embedding layer followed by dense layers. Embedding layer turns
positive integers to dense vectors of fixed size. The output of the embedding layer
is converted to a one-dimensional tensor before going in to the dense layers using a
flatten layer. Batch normalization [27] is used after embedding layer and every dense
layer. The output of the last dense layer is reshaped to generate complex numbers as
the output; i.e., even indices as the real part and odd indices as the imaginary part.

The transmitter has an average power constraint. The normalization layer nor-
malizes the transmitter output so that the average power constraint is satisfied; i.e.,
E[x∗x] ≤ P . As in the single antenna case, the transmitter output, x can be thought
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Fig. 7 MIMO channel autoencoder trained using a constant channel

as modulated symbols as in conventional communication systems. Instead of using
a known constellation scheme with linear decision regions such as BPSK or QPSK,
the optimal constellation points are learned by the autoencoder system over time.

A multiplication layer is built to perform complex multiplication, hx, and the
noise layer introduces noise, n, to the autoencoder system. The input symbols and
the noise change in every training instance and the noise variance σ is adjusted at
both training and test time to simulate varying levels of signal-to-noise ratio (SNR).

The receiver is also designed using an FNN architecture. The symbols received
at the receiver, yi, where i = 1, . . . , Nr , go through multiple dense layers with the
last layer with softmax activation that provides a probability for each symbol with a
sum equal to 1. The codeword with the highest probability is selected as the output.

During training, the transmitter and receiver are optimized jointly to determine
the weights and biases for both of the FNNs that minimize the reconstruction loss.
There are total of 2kNt output classes. Categorical cross-entropy loss function (�CE )
is used for optimization using gradient descent which is given by

�CE (θ) = − 1

M

M∑

i=1

2kNt −1∑

j=0

p′
o, j log(po, j ), (1)

where M is the mini-batch size, θ is the set of neural network parameters, po, j is the
softmax layer’s output probability for output class j for observation o, and p′

o, j is the
binary indicator (0 or 1) if class label j is the correct classification for observation
o. Weight updates are computed based on the loss gradient using back-propagation
algorithm with Adam [19] optimizer. In this case, a forward pass, f (s, θ), and a
backward pass, ∂�CE (θ)

∂θ
, are iteratively computed and a weight update is given by

δw = −η ∂�CE (θ)

∂θ
with η representing the learning rate.

Channel estimation can be performed either using conventional or machine learn-
ing-based methods during test phase (channel estimation block in Fig. 7). h is the
channel matrix and ĥ is the channel estimation at the receiver. During real-time
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operation, the receiver performs channel estimation and sends the index of the best
encoding to the transmitter through the designated feedback channel. The cognitive
transmitter will change the encoding scheme on-the-fly tominimize SER. As a result,
a closed-loop system will be used during operation time as shown in Fig. 7.

Channel estimation error at the receiver leads to a sub-optimal encoding scheme
to be selected both at the transmitter and the receiver, and translates to a performance
loss.Aminimummean square error (MMSE) channel estimator is used at the receiver.
Assuming h = ĥ + h̃ where ĥ is the channel estimation matrix and h̃ is the channel
estimation error, the variance of h̃ using an MMSE channel estimator is given as
[28]:

σ 2
h̃

= 1

1 + ρτ

Nt
Tτ

, (2)

where ρτ is the SNR during the training phase and Tτ is the number of training
samples. Equation (2) was used in [29, 30] for closed-loopMIMO systems with both
channel estimation and feedback (from receiver to transmitter) to perform channel-
guided precoding at the transmitter. Different error variances are introduced to the
channels (originally used for training) in test time to measure the impact of channel
estimation error.

A closed-loop MIMO system using singular value decomposition (SVD)-based
precoding technique at the transmitter [23] is implemented as the baseline. The
channel matrix, h, can be written as h = U
V∗ where U and V are Nr × Nr and
Nt × Nt unitarymatrices, respectively.
 is a diagonalmatrixwith the singular values
of h. To eliminate the interference at each antenna, the channel is diagonalized by
precoding the symbols at the transmitter and decoding at the receiver using the CSI.
In this model, the received signal is written as ỹ = 
x̃ + ñ where x̃ = Vx, ỹ = U∗y
and ñ = U∗n. The distribution of ñ is the same as n with ñ ∼ N(μ, σ 2INr ).

The performance of a 2 × 2 autoencoder system is evaluated and compared with
the baseline performance. The noise variance, σ 2, is set to 1 and Nt = Nr . A closed-
loop system with perfect CSI (no channel estimation error) at the transmitter is
assumed for the baseline simulation. QPSKmodulation is used to modulate the input
bits. Equal power is used at each antenna during transmission. A 2 × 2 autoencoder
system is developed using 2 bits per symbol to match the bit rate with the baseline.
Keras [31] with Tensorflow [32] backend is used for the autoencoder implementation
based on deep learning. The FNNstructures for the transmitter and receiver are shown
in Table2.

Figure8a shows the SNRversus SER curves of the learned communication system
compared to the baseline when no channel estimation error is assumed for both of
the schemes. Promising results are obtained with the autoencoder approach when
nonlinear constellation schemes are allowed at the transmitter. There is more than
10dB gain at an SER of 10−2 when the autoencoder is used.

It is assumed that the transmitter and receiver will be trained for specific channel
instances and resulting neural network parameters (weights and biases) will be stored
in the memory. During operation time, the receiver will perform channel estimation
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Table 2 FNN structures used at the transmitter and receiver

Transmitter Receiver

Layers # neurons Activation function # neurons Activation function

Input 2 4

1 32 ReLU 8 ReLU

2 16 ReLU 16 ReLU

3 8 ReLU 32 ReLU

Output 4 Linear 16 Softmax
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Fig. 8 a SER performance comparison of conventional and learned 2 × 2 spatial multiplexing
schemes for a constant channel with perfect CSI, b The effect of channel estimation error on the
performance of learned 2 × 2 spatial multiplexing scheme for constant channel

and send the index of the encodings that will be used to the transmitter. There will be
channel estimation error at the receiver, which increases with decreasing number of
training symbols [28]. Next, the performance of the developed autoencoder system
when there is channel estimation error is analyzed using anMMSE channel estimator
at the receiver. It is assumed that the training time increases with decreasing SNR
and the system performance is analyzed when the channel estimation error variances
are 0.01, 0.02 and 0.04. The autoencoder system is first trained with a given channel
matrix, h. Then the output of the autoencoder architecture, weights, and biases are
saved and the channel with the estimation error is provided during the operation time.
Figure8b shows the performance results. The autoencoder performance degrades
with increasing channel estimation error, as expected. Error variance of 0.04 is the
maximum that the system can tolerate.



www.manaraa.com

236 T. Erpek et al.

2.3 Multiple User Systems

The autoencoder concept described in Sect. 2.1 was extended tomultiple transmitters
and receivers that operate at the same frequency for single antenna systems in [14]
and for multiple antenna systems in [17]. A two-user AWGN interference channel
was considered in [14] as shown in Fig. 9a.

Transmitter 1wants to communicatemessage s1 ∈ M toReceiver 1 and simultane-
ously, Transmitter 2wants to communicatemessage s2 ∈ M toReceiver 2. Extensions
to K users with possibly different rates and other channel types are straightforward.
Both transmitter-receiver pairs are implemented as FNNs. The encoder and decoder
architectures are the same as described in Sect. 2.1. However, the transmitted mes-
sages interfere at the receivers in this case. The signal received at each receiver is
given by

y1 = x1 + x2 + n1, y2 = x2 + x1 + n2, (3)

where x1, x2 ∈ C
n are the transmitted messages and n1, n2 ∼ CN(0, βIn) is Gaus-

sian noise. No fading is assumed in this scenario; i.e., h values are set to 1 for each
link. The individual cross-entropy loss functions of the first and second transmitter-

receiver pairs are l1 = − log
([

ŝ1
]
s1

)
and l2 = − log

([
ŝ2

]
s2

)
for the first and second

autoencoder, respectively.
L̃1(θ t ), and L̃2(θ t ) correspond to the associated losses for mini-batch t . For joint

training, dynamic weights αt are adapted for each mini-batch t as

αt+1 = L̃1(θ t )

L̃1(θ t ) + L̃2(θ t )
, t > 0 , (4)
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Fig. 9 a The two-user interference channel seen as a combination of two interfering autoencoders
(AEs) that try to reconstruct their respective messages, b BLER versus Eb/N0 for the two-user
interference channel achieved by the autoencoder and 22k/n-QAM time-sharing (TS) for different
parameters (n, k)
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where α0 = 0.5. Thus, the smaller L̃1(θ t ) is compared to L̃2(θ t ), the smaller is its
weight αt+1 for the next mini-batch.

Figure9b shows the BLER of one of the autoencoders as a function of Eb/N0 for
the sets of parameters (n, k) = {(1, 1), (2, 2), (4, 4), (4, 8)}. The DNN architecture
for both autoencoders is the same as that provided in Table1 by replacing n by 2n.
An average power constraint is used to be competitive with higher-order modulation
schemes; i.e., allow varying amplitude in the constellation points for increasing data
rate. As a baseline, uncoded 22k/n-QAM (which has the same rate when used together
with time-sharing between both transmitters) is considered. For (1, 1), (2, 2), and
(4, 4), each transmitter sends a 4-QAM (i.e., QPSK) symbol on every other channel
use. For (4, 8), 16-QAM is used instead. While the autoencoder and time-sharing
have identical BLER for (1, 1) and (2, 2), the former achieves substantial gains of
around 0.7dB for (4, 4) and 1dB for (4, 8) at a BLER of 10−3.

The learned message representations at each receiver are shown in Fig. 10. For
(1, 1), the transmitters have learned to use BPSK-like constellations (see Fig. 3a) in
orthogonal directions (with an arbitrary rotation around the origin). This achieves
the same performance as QPSK with time-sharing. However, for (2, 2), the learned
constellations are not orthogonal anymore and can be interpreted as some form

(c)

(a) (b)

(d)

Fig. 10 Learned constellations for the two-user interference channel with parameters a (1, 1), b
(2, 2), c (4, 4), and d (4, 8). The constellation points of Transmitters 1 and 2 are represented by red
dots and black crosses, respectively [14]
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of superposition coding. For the first symbol, Transmitter 1 uses high power and
Transmitter 2 uses low power. For the second symbol, the roles are changed. For
(4, 4) and (4, 8), the constellations are more difficult to interpret, but it can be seen
that the constellations of both transmitters resemble ellipses with orthogonal major
axes and varying focal distances. This effect is more visible for (4, 8) than for (4, 4)
because of the increased number of constellation points.

Take-away: This section showed that deep learning-based autoenconder can be
effectively used to develop transmitter (modulation and coding) and receiver (demod-
ulation and decoding) functions jointly by combating channel impairments and opti-
mizing end-to-end communication performance in terms of error rates. This approach
applies to single, multiple antenna, and multiuser systems.

3 Deep Learning for Spectrum Situation Awareness

Cognitive radio has emerged as a programmable radio that aims to learn fromwireless
communication data and adapt to spectrum dynamics. For that purpose, cognitive
radio senses its operational radio frequency (RF) environment and adjusts its operat-
ing parameters (e.g., frequency, power, and rate) dynamically and autonomously to
modify system operation and improve its performance, such as maximizing through-
put, mitigating interference, facilitating interoperability, or accessing spectrum as a
secondary user [33].

Channel modeling is important while developing algorithms to enable cognitive
capabilities and evaluating the performance of the communication systems. Most
signal processing algorithms applied to wireless communications assume compact
mathematically convenient channel models such as AWGN, Rayleigh, or Rician fad-
ing channel (or fixed delay/Doppler profiles consisting of Rayleigh fading taps).
These existing channel models generally parameterize channel effects in a relatively
rigid way which does not consider the exact statistics of deployment scenarios. Fur-
thermore, practical systems often involve many hardware imperfections and non-
linearities that are not captured by these existing channel models [14]. Channel esti-
mation is also an important task for a communication system to recover and equalize
the received signal (reversing the channel effects). A known training sequence is
often transmitted at the transmitter and the receiver typically uses methods such as
maximum likelihood or MMSE channel estimation techniques, derived under com-
pact mathematical channel models, to estimate the channel, e.g., MMSE estimator
is applied in (2) for channel estimation in Sect. 2.2.

To support situational awareness, it is important for cognitive radios to quickly
and accurately perform signal detection and classification tasks across a wide range
of phenomena. One example is the DSA application where there are primary (legacy)
and secondary (cognitive) users. Secondary users use the spectrum in an opportunis-
tic manner by avoiding or limiting their destructive levels of interference to the
primary users in a given frequency band. Therefore, secondary users need to detect
and classify the signals received during spectrum sensing reliably to identify whether
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there is any primary user activity, other secondary users, or vacant spectrum oppor-
tunities. Conventional signal detection and classification algorithms aim to capture
specific signal features (i.e., expert features) such as cyclostationary features and are
typically developed to achieve performance goals such as detection against specific
signal types and under specific channel model assumptions (e.g., AWGN). There-
fore, these conventional algorithms often lack the ability to generalize to different
signal types and channel conditions, while deep learning can capture and adapt its
operation to raw and dynamic spectrum data of a wide variety of signal signatures
and channel effects (that feature-based machine learning algorithms may struggle to
capture).

Deep learning approaches have been used to address the challenges associated
with both channel modeling and estimation as well as signal detection and classifi-
cation tasks. In the following subsections we first describe how channel modeling
and estimation can be performed using deep learning methods. Next, we describe the
CNN architectures that are used for signal detection and modulation classification.
Finally, we describe how to use GANs to augment training data in spectrum sensing
applications.

3.1 Channel Modeling and Estimation

The performance of communication systems can often benefit from being opti-
mized for specific scenarios which exhibit structured channel effects such as hard-
ware responses, interference, distortion, multi-path and noise effects beyond sim-
plified analytic models or distributions. Moreover, the channel autoencoder systems
described in Sect. 2 requires the statistical model for the channel to be as close as
possible to what the operational system will experience during training in order to
achieve optimal performance (i.e., the phenomena during training should accurately
match the phenomena during deployment). However, accurately capturing all these
effects in a closed-form analytical model is a challenging (and often infeasible)
task. As a result, the channel is often represented using simplified models with-
out taking real-world complexities into account. Recently, model-free approaches
where the channel response is learned from data are proposed for real-time channel
modeling using deep learning techniques. In particular, stochastic channel response
functions are approximated using GANs [34, 35], variational GANs [36], reinforce-
ment learning and sampling approach [37], stochastic perturbation techniques [38],
and reinforcement learning policy gradient methods [20].

GANs [39] have been successfully used for a number of applications such as
generating fake images (e.g., faces, cats) to confuse image recognition systems.
Recently, GANs have also been used in a wide range of applications such as audio
generation, approximation of difficult distributions, and even the (human-guided)
generation of novel art. Building upon this same idea, the GAN was applied to
approximate the response of the channel in any arbitrary communication system in
[34] and the resulting systemwas generally called aCommunicationsGAN. The block
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diagram of the Communications GAN that learns a communication system over a
physical channel with no closed-form model or expression is shown in Fig. 11.

As opposed to the original autoencoder shown in Fig. 4, a channel model with an
analytic expression is not included in the autoencoder in Fig. 11. Two forms of the
channel h(x) are included instead to encompass modeling of any black-box channel
transform where x is the transmitter output: h0(x) is a real-world physical mea-
surement of the response of a communication system comprising a transmitter, a
receiver, and a channel and h1(x, θh) is a non-linear DNN which seeks to mimic the
channel response of h0 synthetically, and is differentiable. θh is the channel approxi-
mation of neural network parameters. During training, an iterative approach is used to
reach an optimized solution, cycling between competing training objectives, updating
weights for each network during the appropriate stage with manually tuned learning
rates and relatively small networks for f , g, and h, and employing several fully con-
nected ReLU layers for each. The physical channel h0(x) was implemented using
an SDR (Universal Software Radio Peripheral, USRP B210 [40]), for over-the-air
transmission tests. It was shown that an effective autoencoder-based communication
system with robust performance can be learned by using an adversarial approach to
approximate channel functions for arbitrary communications channel. This approach
eliminates the need for a closed-form channel model reducing the need for assump-
tions on the form it takes.

The channel network y = h(x) is treated as a stochastic function approximation
and the accuracy of the resulting conditional probability distribution p(y|x) is opti-
mized in [36]. The channel approximation network ŷ = h(x, θh) is considered to be
a conditional probability distribution, p(ŷ|x) and the distance between the condi-
tional probability distributions p(y|x) and p(ŷ|x) resulting from the measurement
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and from the variational channel approximation network are minimized. As in [39],
the parameters of each network are minimized using the two stochastic gradients
given in (5) and (6).

∇θD

1

N

N∑

i=0

[
log (D(xi , yi , θD)) + log (1 − D(xi , h(xi , θh), θD))

]
, (5)

∇θh

1

N

N∑

i=0

log (1 − D(xi , h(xi , θh), θD)) . (6)

A new discriminative network D(xi , yi , θD) is introduced to classify between real
samples, y, and synthetic samples, ŷ, from the channel given its input, x. θD is the
discriminative networkparameters.h(x, θh) takes the place of the generative network,
G(z), where x reflects conditional transmitted symbols/samples. N is the number of
samples. Additional stochasticity in the function is introduced through variational
layers. Furthermore, training such an arrangement using the improved Wasserstein
GAN approach with gradient penalty (WGAN-GP) [41] allows convergence with
minimal tuning.

Adam [19] optimizer is used with a learning rate between 10−4 and 5 × 10−4

to iteratively update the network parameters. The variational architecture for the
stochastic channel approximation network is shown in Fig. 12a.

For performance evaluation, a communication system that transmits 1 bit/symbol
is considered. A Chi-squared distributed channel model is assumed to explore a
more uncommon channel scenario. The measured and approximated conditional
distributions from the black box channel model are shown in Fig. 12b. There is some
difference between the original distribution and its approximation, resulting partially
from its representation as a mixture of Gaussian latent variables; however, this can
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Fig. 12 a Variational architecture for the stochastic channel approximation network (conditional
generator), b Learned one-dimensional distributions of conditional density on non-Gaussian (Chi-
Squared) channel effects using variational GAN training [36]
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be alleviated by choosing different sampling distributions and by increasing the
dimensions of the latent space (at the cost of increased model complexity).

This approach can also capture more complex distributions such as the channel
responses of cascades of stochastic effects by jointly approximating the aggregate
distribution with the network. Consider a 16-QAM system that includes AWGN
effects along with phase noise, phase offset, and non-linear AM/AM and AM/PM
distortion effects introduced by a hardware amplifier model. Figure13 illustrates
the marginalized p(x) distribution for both the measured version of the received
signal, and the approximated version of the distribution when a stochastic channel
approximation model is learned with variational GANs. It is observed that each
constellation point’s distribution, circumferential elongation of these distributions
due to phase noise at higher amplitudes, and generally the first order approximation
of the distribution are learned successfully.

On the receiver side, typically synchronization is performed on the signal (timing
estimation, frequency offset estimation, etc.) before performing additional signal
processing steps for conventional communication systems (e.g., symbol detection).
Synchronization typically estimates these time, frequency, phase, and rate errors
in the received data and corrects for them to create a normalized version of the
signal. Learned communication systems described in Sect. 2 can in some instances
perform implicit synchronization and channel estimation since hardware and channel
impairments such as synchronization offsets can be included during training. From a
learning perspective, we can treat these corrections as transforms, leveraging expert
knowledge about the transforms to simplify the end-to-end task, but still allowing the
estimators to be fully learned. This approach of radio transformer networks (RTNs),
as explored in both of [14, 42], are shown to reduce training time and complexity
and improve generalization by leveraging domain knowledge.

Fig. 13 Learned two-dimensional distributions of received 16-QAMconstellation non-linear chan-
nel effects using variational GAN [36]
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These offset effects exist in any real system containing transmitters and receivers
whose oscillators and clocks are not locked together.

Timing and symbol-rate recoveryprocesses involve the estimation and re-sampling
of the input signal at correct timing offsets and sampling increments, which has a
direct analogue to the extraction of visual pixels at the correct offset, shift or scale
(e.g., applying the correct Affine transformation) in computer vision using trans-
former networks. The input data can be represented as a two-dimensional input, with
the rows containing in-phase (I) and quadrature (Q) samples and N columns contain-
ing samples in time. A full 2D Affine transformation allows for translation, rotation,
and scaling in 2D given by a 2 × 3 element parameter vector. To restrict this to 1D
translation and scaling in the time dimension, the mask in (7) is introduced such that
a normal 2D Affine transform implementation may be used from the image domain.
θ0, θ1, and θ2 are the remaining unmasked parameters for the 1D Affine transform:

[
θ0 0 θ2
0 θ1 0

]
(7)

Phase and frequency offset recovery tasks do not have an immediate analogue in
the vision domain. However, a simple signal processing transform can be applied to
accomplish these. The input signal is mixed with a complex sinusoid with phase and
frequency as defined by two new unknown parameters as shown in (8).

yn = xn e
j (nθ3+θ4) (8)

This transform can be directly implemented as a new layer in Keras [31], cascaded
before the Affine transform module for timing and symbol-rate recovery.

The task of synchronization then becomes the task of parameter estimation of θi
values passed into the transformer modules. Domain appropriate layers are used to
assist in estimation of these parameters, namely, complex convolutional 1D layer
and complex to power and phase layers. Although many architectures are possible,
both the complex convolution operation and the differentiable Cartesian to Polar
operation are used to simplify the learning task. Figure14 shows one example of an

Fig. 14 RTN architecture [42]
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RTN architecture. A dropout rate such as 0.5 can used between layers to prevent
over-fitting, and Adam [19] SGD can be used to optimize network parameters on the
training set, in this case with batch size 1024, and learning rate 0.001.

The density plots for pre- and post-transformed input constellations are shown in
Fig. 15. When the constellation density for 50 test examples over a range of 20 time
samples are observed, the density starts to form around the constellation points after
using the radio attention model.

In both [14, 20], Rayleigh block fading channel is considered as the channel and
RTNs are used for channel estimation. Then the received signal is divided by the
learned channel response to equalize the input signal, which leads to improved SER
performance, providing a more quantitative study of the RTN efficacy.

The described channel modeling approaches may be used broadly for enhanced
optimization, test, and measurement of communication systems and specifically to
provide effective model-free methods for various wireless tasks such as channel
learning in autoencoder-based communications (see Sect. 2) and signal classifica-
tion (see Sect. 3.2). Moreover, the developed RTN models can be used to extract the
channel features, similar to channel estimation in conventional systems, and per-
form equalization by using a transformation layer which allows for imparting of
expert knowledge without over-specifying learned models (e.g., writing estimators
for specific protocols or references).

Fig. 15 Density plots of the pre- and post-transformed input constellations [42]
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3.2 Signal Detection and Modulation Classification

Signal detection and classification functionalities define the ability of a wireless
communication system to accurately build and maintain an up-to-date view of their
current operating environment. Detecting and coexisting with other users of the
spectrum, detecting and isolating sources of interference, flagging significant spectral
events, or identifying spectral vacancies within the radio spectrum rely on signal
detection and classification. The probability of detection is proportional to the SNR
at the receiver. Traditionally, specific signal detectors are needed for each waveform,
developed based on its analytic properties, resulting in systems which can be difficult
to develop and deploy robustly in real-world wireless applications largely due to their
over-specificity, complexity, or sub-optimal performance in real world conditions
[43].

The RF spectrum is shared with many different signal types ranging from TV
broadcast to radar. Signal detection and classification tasks are particularly challeng-
ing in the presence of multiple waveforms operating at the same frequency and at low
SNR. Conventional signal detection and classification methods can be categorized
as:

– Generalmethods: Thesemethods do not require any prior information on the signal
types. They detect multiple signal types; however, their constant false alarm rate
(CFAR) performance is relatively poor. Energy detector [44] is an example of
detectors which do not require prior information. These type of detectors can be
easily cast into convenient probabilistic form for analysis, but they are severely
constrained in their abilities to leverage additional information about signal context
or structure to improve performance.

– Specialized methods: These methods provide sensitive detectors for specific signal
types. The detection and classification methods are developed using specific fea-
tures of the signal of interest. Matched filters and cyclostationary signal detectors
[44] are examples to this type. These methods are often not scalable since a new
type of classifier is required for each new waveform.

A new class of deep learning-based radio waveform detectors that leverages the
powerful new techniques developed in computer vision, especially convolutional
feature learning, holds the potential to improve the signal detection and classification
performance of practical systems bygeneralizingwell and remaining sensitive to very
low power signals [43]. A strong analogy of this task exists in computer vision with
object identification and localization tasks. Recent object detection and localization
approaches associate specific object classes with bounding box labels within the
image.A similar approachwas followed in [45],where theRFspectrum is represented
as an image and CNNs are used to detect, localize and identify radio transmissions
within wide-band time-frequency power spectrograms using feature learning on 2D
images.

Gradient-weighted Class Activation Mapping (Grad-CAM) uses the gradients of
any target concept flowing into the final convolutional layer to produce a coarse
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localization map highlighting the important regions in the image that aids to predict
the concept [46]. Grad-CAM is used to perform the spectral event localization in [45].
Figure16 shows the block-diagramof theGrad-CAM,which is used for spectral event
localization. The gradient of activation score yC (instead of the class probability) is
calculated with respect to all the feature maps of a given convolution layer based on
the provided input label C . The global average pooling [47] of the gradients gives
the corresponding weight associated with the feature map. Finally, the weighted sum
of the feature maps is passed through an element-wise ReLU unit to get the class
activation map.

To demonstrate the performance in this work, a dataset was collected in 13 dif-
ferent frequency bands using a USRP B205 transceiver at eight different locations
across five distinct cities and across a range of different bands and traffic patterns.
Signal types in the dataset include GSM, LTE, ISM, TV, and FM among others.
Spectrogram plots shown in Fig. 17, labeled as input spectrum, are generated using
the collected data to show the signal strength over time and frequency. The x-axis
shows the time and the y-axis shows the signal frequency. These images are used as
an input to the CNN architecture. The Grad-CAM implementation results are also
shown in Fig. 17. A hot region of activation is observed on top of the signal bursts, as
expected. The trained feature objective was to classify the band instead of activating
all instances of a certain emission type since the labels for every signal activity in a
band are not provided; i.e., each spectrogram is assigned only one label even though
there may be some other narrow band signals in the same spectrogram. For this rea-
son, for some examples, the activation map highlights only strong parts of the signal
and some parts of the signals are favored for identification.

Figure18a shows the confusion matrix for the classification results. This method
for detecting, classifying and localizing emissions within a spectrogram provides
reasonable classification performance and reasonable class activation maps corre-
sponding to activity regions in most cases as pictured.

Fig. 16 Block diagram of Grad-CAM [46]
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Fig. 17 GradCAM based activation maps and corresponding input spectrograms for 12 test exam-
ples from the dataset [45]

For the task of supervised modulation recognition, a number of other non-NN
based machine learning techniques from literature were compared with that of a
convolutional deep learning architecture in terms of performance. In [3], the gener-
ated data set consists of 11modulations: 8 digital and 3 analogmodulations,which are
all widely used in wireless communication systems. These consist of BPSK, QPSK,
8PSK, 16-QAM, 64-QAM, BFSK, CPFSK, and PAM4 as digital modulations, and
WB-FM, AM-SSB, and AM-DSB as analog modulations. Data is modulated at a
rate of roughly 8 samples per symbol with a normalized average transmit power of
0dB. These signals are exposed to realistic channel effects. Thermal noise results
in relatively flat white Gaussian noise at the receiver which forms a noise floor or
sensitivity level and SNR. Oscillator drift due to temperature and other semiconduc-
tor physics differing at the transmitter and receiver result in symbol timing offset,
sample rate offset, carrier frequency offset, and phase difference. These effects lead
to a temporal shifting, scaling, linear mixing/rotating between channels, and spin-
ning of the received signal based on unknown time varying processes. Moreover, real
channels undergo random filtering based on the arriving modes of the transmitted
signal at the receiver with varying amplitude, phase, Doppler, and delay. This is a
phenomenon commonly known as multi-path fading or frequency selective fading,
which occurs in any environment where signals may reflect off buildings, vehicles,
or any form of reflector in the environment.

Figure18b shows a simpleCNNarchitecture used for themodulation classification
task, an un-tuned 4-layer network utilizing two convolutional layers and two (overly
sized) dense fully connected layers. Layers use ReLU activation functions except for
a softmax activation on the output layer to act as a classifier. Dropout regularization is
used to prevent over-fitting, while a ‖W‖2 norm regularization on weights and ‖h‖1
norm penalty on dense layer activations can also encourage sparsity of solutions [48,
49]. Training is conducted using a categorical cross-entropy loss and an Adam [19]
solver.
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Fig. 18 a Confusion matrix for RF band classification [45], b CNN architecture [3]

Expert features (Higher order moments, and cumulants) are used by the baseline
classifiers. Figure19 shows the performance results of the Naive Bayes, support vec-
tor machine (SVM) and CNN network architecture results where the CNN classifier
outperforms the Naive Bayes and SVM classifiers at all SNRs.

For more realistic evaluations, over-the-air dataset was generated in [50] and
the modulation classification performance was compared between virtual geometry
group (VGG) and residual networks (RNs) with better architecture tuning, as well
as a stronger XGBoost based baseline. It was shown that the RN approach achieves
state-of-the-artmodulation classification performance on for both synthetic and over-
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Fig. 19 Example of deep
learning outperforming
conventional machine
learning in wireless domain.
CNN is more successful than
SVM and Naive Bayes in
classifying a variety of
digital modulations (BPSK,
QPSK, 8PSK, 16-QAM,
64-QAM, BFSK, CPFSK,
and PAM4) and analog
modulations (WB-FM,
AM-SSB, and AM-DSB) [3]
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the-air signals using datasets consisting of 1 million examples, each 1024 samples
long. The RN achieves roughly 5dB higher sensitivity for equivalent classification
accuracy than the XGBoost baseline at low SNRs while performances are identical
at low SNRs. At high SNRs, a maximum classification accuracy rate of 99.8% is
achieved by theRN,while theVGGnetwork achieves 98.3%and the baselinemethod
achieves a 94.6% accuracy.

3.3 Generative Adversarial Methods for Situation Awareness

Radios collect spectrum data samples such as raw (complex-valued) data samples or
received signal strength indicator (RSSI) values through spectrum sensing, and use
them to train DNNs for various applications such as channel estimation or waveform
classification, as discussed in previous sections. There are two important hurdles to
overcome before using spectrum data for deep learning purposes.

1. Deep learning requires a large number of data samples to be able to train the
complex structures of DNNs. This may not be readily available via spectrum
sensing, since a wireless user who spends too much time on spectrum sensing
may not have enough time left for other tasks such as transmitting its data packets.
Therefore, there may not be enough number of wireless data samples available to
train a DNN. Training data augmentation is needed to expand the training data
collected in spectrum sensing.

2. Characteristics of spectrum data change over time as the underlying channels,
interference and traffic effects, as well as transmit patterns of wireless users
change. Therefore, training data collected for one instant may not be fully appli-
cable in another instant. One example is the channel change when the wireless
nodes move from outdoors to indoors, where more multipaths and therefore dif-
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ferent channel conditions are expected. Domain adaptation is needed to change
test or training data collected in spectrum sensing from one domain (e.g., low
mobility) to another domain (high mobility).

The GAN has emerged as a viable approach to generate synthetic data samples
based on a small number of real data samples in a short learning period and augment
the training data with these synthetic data samples for computer vision, text, and
cyber applications [51–53]. The GAN consists of a generator and a discriminator
playing a minimax game. The generator aims to generate realistic data (with labels),
while the discriminator aims to distinguish data generated by the generator as real or
synthetic. Conditional GAN extends the GAN concept such that the generator can
generate synthetic data samples with labels [54]. Figure20 shows the conditional
GAN architecture. When applied to wireless communications, the GAN needs to
capture external effects of channel patterns, interference, and traffic profiles in addi-
tion to waveform features. The GAN has been applied for training data augmentation
for channel measurements in spectrum sensing [55], modulation classification [56],
jamming [57, 58], and call data records for 5G networks [59].

As an example, consider an adversary that senses the spectrum and observes
transmissions of another node (hidden in channel impairments, traffic on/off patterns
and other background transmissions). Based on these observations, the adversary
trains a DNN to predict when there will be a successful transmission and jams it. See
Sect. 4 for details of this setting when deep learning for wireless communications
security is discussed. If the adversary waits too long to collect data, it may lose the
opportunity to jam transmissions. Therefore, the adversary collects a small number
of sensing samples and then augments them through GAN.

The wireless application of GAN for domain adaptation has remained limited so
far. Reference [55] studied the adaptation of training data for spectrum sensing,where
a wireless receiver decides if there is an active transmitter (label 1) or not (label 2).
There are two environments corresponding to two different channel types, namely
Rayleigh fading distributions with variance 0.2 (environment 1) and 2 (environment
2). Assume the receiver has training data for environment 1 and trained a classifier,
whereas there is no training data for environment 2. Therefore, the receiver generates
synthetic training data samples for environment 2. Training data adaptation consists
of a bidirectional GAN [60], a conditional GAN [54], and a classifier. Bidirectional
GAN obtains the inverse mapping from data to the conditioned noise by using a
GAN and an autoencoder that together learn to take the inverse of a neural network.
As the environment changes from 1 to 2, a new conditional GAN is trained that

Discriminator, 

Generator, Noise: 
Labels:

Real or 
Synthetic

Synthetic data 

Real Data: 
Labels:

Fig. 20 Conditional GAN for training data augmentation
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takes the new samples in environment 2 as real inputs. Instead of random noise
as synthetic inputs, the inverse mapping of the bidirectional GAN is used and the
labels in environment 1 is carried to environment 2 to train the CGAN. After CGAN
training, a classifier is trained with domain adapted samples and used to label new
samples collected in environment 2. This approach prevents 42% drop in accuracy
of SVM-based spectrum sensor operating at 5dB SNR [55].

Separately, the GAN was used in [61] to match waveform, channel, and radio
characteristics, and spoof wireless signals that cannot be reliably distinguished from
legitimate signals. This attack can be used against signal authentication systems and
can be launched to emulate primary user behavior in primary user emulation (PUE)
attacks.

Take-away: This section showed that deep learning provides novel means to char-
acterize and analyze the spectrum. By outperforming conventional machine learn-
ing algorithms, DNNs significantly contribute to spectrum situation awareness for
channel modeling and estimation with GANs and FNNs and signal detection and
classification with CNNs.

4 Deep Learning for Wireless Communications Security

Wireless communications are highly susceptible to security threats due to the shared
medium of wireless transmissions. A typical example of wireless attacks is the jam-
ming attack that aims to disrupt wireless communications by imposing interference
at receivers (e.g., see [62]) and causing denial of service (DoS) [63]. These attacks
use different communication means (e.g., power control [64] or random access [65])
and apply at different levels of prior information on attacker’s intent [66]. As radios
become smarter by performingmore sophisticated tasks, they also becomevulnerable
to advanced attacks that target their underlying tasks. One example is the spectrum
sensing data falsification (SSDF) attack,where an adversary that participates in coop-
erative spectrum sensing deliberately falsifies its spectrum sensing result (namely,
whether the channel is busy or idle) [67]. This way, the adversary aims to change
the channel occupancy decision from busy to idle (such that the subsequent trans-
mission fails) or from idle to busy (such that no other radio transmits and either the
transmission opportunity is wasted or the adversary gets the opportunity to transmit).
Data falsification may also occur at other network functions. One example is that
routing decisions are manipulated by falsifying measures of traffic congestion (such
as queue backlogs) exchanged throughout the wireless network [68, 69].

Beyond these security threats, the increasing use of deep learning by radios opens
up opportunities for an adversary to launch new types of attacks on wireless com-
munications. In particular, deep learning itself becomes the primary target of the
adversary. The paradigm of learning in the presence of an adversary is the subject of
the emerging field of adversarial machine learning [70] that has been traditionally
applied to other data domains such as computer vision. The exploratory (inference)
attack [71] is one example, where the adversary tries to learn the inner-workings of a
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machine learning classifier (such as a DNN) by querying it with some data samples,
collecting the returned labels, and building a functionally equivalent classifier.

Adversarial machine learning provides the necessary optimizationmechanisms to
launch and mitigate attacks on machine learning. In addition to exploratory attacks,
two other popular types of attacks are evasion and causative (poisoning) attacks. In
evasion attacks, the adversary selects or generates data samples to query a machine
learning algorithm such as a deep learning classifier and fool it into making wrong
decisions [72]. In causative attacks, the adversary targets the training process and
tampers with the training data (i.e., modifies the corresponding labels) such that the
machine learning algorithm is not trained adequately [73]. As deep learning is sen-
sitive to errors in training data, this attack is effective against DNNs. While these
attacks have been successfully applied in different data domains such as computer
vision (such as image classification [53]) and natural language processing (such as
document classification [74]), they cannot be readily applied in wireless communi-
cations. The reasons are multi-fold:

– The adversary does not have a mechanism to directly query a wireless transmitter
but it can only observe its transmission characteristics over the air.

– The collection of training data by the adversary is through a noisy channel, i.e.,
the training data of the adversary is imperfect by default.

– The training data and labels of the adversary and its target are different in wire-
less domain. Their data samples are different because they are received through
different channels, whereas their labels are different because their machine learn-
ing objectives are different. For example, a transmitter may try to detect whether
the channel is busy, while the jammer may try to predict when there will be a
successful transmission.

Hence, the application of adversarial machine learning to wireless domain is not
trivial and needs to account for the aforementioned differences, both from the attacker
and defender perspectives [57, 58, 75]. As shown in Fig. 21, a basic communication
scenario is used to illustrate wireless attacks based on adversarial machine learning
[57]. There is one cognitive transmitter T that acts as a secondary user and dynam-
ically accesses the spectrum to communicate with its receiver R while avoiding
interference from a background transmitter B that acts as a primary user (e.g., TV
broadcast network). T uses a decision function such as a deep learning classifier for
its transmissions to capture B’s transmission pattern as well as channel effects. There
is also an adversary A that does not know the decision function of T and tries to
learn it by sensing the spectrum. This corresponds to a black-box exploratory attack
that is followed by other attacks such as jamming to reduce the performance of T . In
the following, we will describe the exploratory attack on wireless communications
and how it is used to launch an effective jamming attack [57]. Then we will present
other wireless attacks motivated by adversarial deep learning and discuss defense
strategies.
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4.1 Operational Modes for Transmitter and Adversary

A synchronized slotted time is assumed where all nodes operate on a single channel
(with fixed center frequency and instantaneous bandwidth). Channel gain between
any transmitting node i (T , B, or A) and any receiving node j (R, T , or A) is given
by hi j (t) in time slot t . Then, j receives signal

y j (t) =
∑

i∈T (t)

hi j (t)xi (t) + n j (t) (9)

in time slot t , where T (t) is the set of transmitting nodes, n j (t) is the receiver noise
at j , and xi (t) carries a signal if i ∈ T (t), otherwise xi (t) = 0. Since channel and
noise realizations at A (namely, hBA(t) and nA(t)) and T (namely, hBA(t) and nA(t))
are different, they observe different data input for their tasks. It is assumed that n j (t)
is random according to a zero-mean Gaussian distribution with power normalized
as one, and hi j (t) depends on the distance di j between i and j and type of fading.
It is also assumed that signal strength diminishes proportionally to 1/d2

i j and log-
normal shadowing is used as the shadowing model (namely, flat fading is considered
such that the coherence bandwidth of the channel is larger than the bandwidth of the
signal and all frequency components of the signal experience the same magnitude
of fading). Note that y j (t) is the signal received during data transmission or sensing
periods. In the latter case, y j (t) is denoted as s j (t). Next, the operation modes of
background transmitter B, transmitter T , receiver R, and adversary A are discussed,
as illustrated in Fig. 21.

Background transmitter B The transmit behavior (idle or busy) of B determines
the channel status (idle or busy) in each time slot. There are random packet arrivals at
B according to the Bernoulli processwith rate λ (packet/slot). If B is in idle status and
has a packet to transmit, it is activated with certain probability and keeps transmitting
until there is no packet anymore in its queue. Since B’s busy/idle states are correlated

Adversary collects spectrum sensing data and 
trains another classifier that decides when to jam.

Transmitter collects spectrum sensing data and
trains a classifier that decides on when to transmit.
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Fig. 21 Adversarial deep learning to launch a wireless attack
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over time, both T and J need to observe not only the last channel status but the past
channel states over several time slots to predict the current channel status.

Transmitter T In each time slot, T senses the channel and detects whether the
channel status is idle or busy, i.e., whether B remains idle or transmits. If idle, T
transmits data (a packet) to R in this time slot. T has trained a DNN (unknown to
J ) as the classifier CT that classifies the current time slot t as idle or busy based on
recent KT sensing results (sT (t − KT + 1), . . . , sT (t − 1), sT (t)). In time slot t , the
data sample for CT is

sT (t) = (sT (t − KT + 1), . . . , sT (t − 1), sT (t)) (10)

and the corresponding label is

LT (t) = {“idle”, “busy”}, (11)

where “idle” or “busy” means that the channel is idle or busy, respectively. Thus,
the training data for CT is built as {(sT (t), LT (t))}t . T obtains the label LT (t) of a
sample only indirectly by observing whether its transmission (if any) is successful or
not. A successful transmission indicates an idle channel and a failure indicates a busy
channel. Note that this is a noisy observation since a transmission of T may fail or
succeed depending on channel conditions evenwhen B does not transmit or transmits,
respectively. T deems a transmission as successful if it receives an acknowledgment
(ACK) from R. If there is no ACK received, then T deems the transmission as
failed. Note that T uses multiple sensing results as its features since features should
be able to capture time correlation and help achieve a high sensing accuracy in a
short period of time. Then classifier CT : sT (t) �→ LT (t) defines the mapping from
sensing results to occupancy decision and consequently to transmission decision in
time slot t .

Adversary A Due to the open nature of wireless spectrum, A can also sense the
spectrum and then predict whether there will be a successful transmission (with
feedback ACK), or not (without a feedback) in a time slot. In the former case, A
transmits to jam the channel in this time slot. In the latter case, A remains idle.
Without knowing CT , A builds another classifier CA itself, which predicts whether
there will be a successful transmission, or not, in time slot t based on recent KA

sensing results (sA(t − KA + 1), . . . , sA(t − 1), sA(t)). The goal of A is to infer CT

by building a surrogate classifier CA. Note that A needs to learn relative channel
effects and T ’s transmit behavior that in turn depends on B’s transmit behavior and
corresponding channel effects. This is a difficult learning task that needs to be handled
in a black-box manner without any prior knowledge. Therefore, it is imperative for
A to use a DNN as CA. In time slot t , the data sample for CA is

sA(t) = (sA(t − KA + 1), . . . , sA(t − 1), sA(t)) (12)

and the corresponding label is
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L A(t) = {“ACK”, “no ACK”}, (13)

where “ACK” or “no ACK” means that there is an ACK following a transmission,
or not respectively. Thus, the training data for CA is built as {(sA(t), L A(t))}t . CA is
defined as the mapping from sensing results to prediction of successful transmission
and consequently to jamming decision in each time slot. A does not jam all time
slots, although doing so can maximize the success of jamming, since Awill be easily
detected if it is jamming in all time slots due to the high false alarm rate and J may
have power budget in terms of the average jamming power (thus it cannot jam all
time slots).

Receiver R R receives a transmission of T successfully if the signal-to-interference-
and-noise-ratio (SINR) is larger than some threshold β. SINR captures transmit
power, channel, and interference effects. Whenever a transmission is successfully
received, R sends an ACK back to T over the short ending period of the time slot. In
the meantime, A senses the spectrum and potentially detects the presence of ACK
(without decoding it) by considering the fact that ACKmessages are typically distinct
from data messages (they are short and they follow the data transmission with some
fixed time lag).

4.2 Jamming Based on Exploratory Attack

Deep Learning by Transmitter T 1000 samples are collected by T and split by half
to build its training and test data. 10 most recent sensing results are used to build one
data sample (i.e., KT = 10). T trains an FNN asCT . TheMicrosoft Cognitive Toolkit
(CNTK) [76] is used to train theFNN.T optimizes the hyperparameters of theDNNto
minimize eT = max{eMD

T , eFA
T }, where eMD

T is the error probability for misdetection
(a time slot is idle, but T predicts it as busy) and eFA

T is the error probability for
false alarm (a time slot is busy, but T predicts it as idle). When the arrival rate
λ for B is 0.2 (packet/slot), the optimized hyperparameters of CT are found as
follows. The neural network consists of one hidden layerwith 100 neurons. The cross-
entropy loss function is minimized to train the neural network with backpropagation
algorithm. The output layer uses softmax activation. The hidden layers are activated
using the sigmoid function. All weights and biases are initialized to random values
in [−1.0, 1.0]. The input values are unit normalized in the first training pass. The
minibatch size is 25. The momentum coefficient to update the gradient is 0.9. The
number of epochs per time slot is 10.

In test time,CT is run over 500 time slots to evaluate its performance. The positions
of the T , R and B are fixed at locations (0, 0), (10, 0), and (0, 10), respectively. All
transmit powers are set 30dB above noise power. The SINR threshold β is set as
3. For these scenario parameters, eMD

T = eFA
T = 0. T makes 400 transmissions and

383 of them are successful. Note that 17 transmissions on idle channels fail due to
random channel conditions. Thus, the throughput is 383/500 = 0.766 packet/slot
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and the success ratio is 383/400 = 95.75%. Next, we will show how adversarial
deep learning-based jammer can significantly reduce this performance.

Adversarial Deep Learning by Adversary A Exploratory attack aims to infer a
machine learning (including deep learning) classifier and has been applied to other
data domains such as text classification in [71] and to image classification in [72].
In these previous works, the adversary queries the target classifier, obtains labels of
a number of samples and then trains a functionally equivalent classifier using deep
learning. Two classifiers are functionally equivalent if they provide the same labels
for the same sample. However, this approach cannot be applied to the wireless setting
due to the differences in data samples and labels.

– Data samples at a given time are different, as T and A receive signals through
different channels (i.e., due to different distances from B and realizations), such
that spectrum sensing results sT (t) and sA(t) are different at any time t . At a given
time t , the signal from B is received at T , R, and A as yT (t) = hBT xB(t) + nT (t),
yR(t) = hBRxB(t) + nR(t), and yA(t) = hBAxB(t) + nA(t), respectively where
hBT , hBR , and hBA are the channel gains and nT (t), nR(t), and nA(t) are the
receiver noises.

– Classifiers of T and A have different types of labels. T ’s labels indicate whether
the channel is busy or idle, whereas A’s labels indicate whether T will have a
successful transmission, or not.

A trains an FNN as the deep learning classifier CA. For that purpose, 1000 sam-
ples are collected by A and split by half to build its training and test data. J uses the
most recent 10 sensing results to build one data sample (i.e., KA = 10). J aims to
jam successful transmissions (with received ACK feedback) only. A optimizes the
hyperparameters to minimize eA = max{eMD

A , eFA
A }, where eMD

A is the error proba-
bility for misdetection (T ’s transmission is successful, but A predicts there will not
be an ACK) and eFA

A is the error probability for false alarm (T does not transmit or
T ’s transmission fails (even without jamming), but A predicts that there will be an
ACK). The training time (including hyperparameter optimization) is 67 s and the test
time per sample is 0.024ms. The optimized hyperparameters of the CA are found
as follows. The neural network consists of two hidden layers with 50 neurons. The
cross-entropy loss function is used to train theDNNwith backpropagation algorithm.
The output layer uses softmax activation. The hidden layers are activated using the
hyperbolic tangent (Tanh) function. All weights and biases are initialized to random
values in [−1.0, 1.0]. The input values are unit normalized in the first training pass.
The minibatch size is 25. The momentum coefficient to update the gradient is 0.9.
The number of epochs per time slot is 10. With these hyperparameters, the error eA
is minimized to 1.48%. Note that the hyperparameter optimization affects the accu-
racy. For instance, if the number of layers is decreased to 1, the error eA increases to
1.73%. Similarly, if the number of neurons per layer is changed to 30, the error eA
increases to 2.22%.

In test time,CA is run over 500 time slots to evaluate its performance. The position
of A is fixed at location (10, 10) and its jamming power is 30dB above noise power.
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If there is no jamming, T will have 383 successful transmissions. Under A’s attack,
the number of misdetections is 16, i.e., misdetection probability is eMD

A = 16/383 =
4.18% (majority of successful transmissions are jammed), and the number of false
alarms is 17, i.e., false alarm probability is eFA

A = 17/(500 − 383) = 14.53%.As the
significant impact of this attack, there are only 25 successful transmissions among
400 transmissions. Thus, the throughput of T is reduced from 0.766 packet/slot to
25/500 = 0.05 packet/slot and the success ratio of T is reduced from 95.75% to
25/400 = 6.25%.

As a benchmark, a conventional attack without adversarial deep learning is also
considered. In this sensing-based jamming, A jams the channel if its received power
during spectrum sensing in the current slot is greater than a threshold τ . Note that
the performance of a sensing-based jammer relies on proper selection of τ . If τ is
too low, the number of false alarms increases. If τ is too high, then the number of
misdetections increases. Note that τ is usually given as a fixed value since there is
no clear mechanism to select τ . For a performance upper bound, τ is selected as
3.4 that minimizes eA and used to compute the throughput and the success ratio of
the transmitter in the presence of sensing-based jammer. Then eMD

A = 12.8% and
eFA
A = 12.6%. Note that eMD

A grows quickly to 30.0% when τ is increased to 5,
whereas eFA

A grows to 14.0%when τ is reduced to 2. With the best selection of τ , the
throughput of T is reduced to 0.140 packet/slot and the success ratio of T is reduced
from 16.99%. On the other hand, if τ is selected arbitrarily (say, 4.7), the throughput
of T becomes 0.576 packet/slot and the success ratio of T becomes 69.90% (i.e.,
the attack is not as effective). The results which are summarized in Table3 show the
importance of adversarial deep learning in launching wireless jamming attacks.

Generative Adversarial Learning for Wireless Attacks In the training process of
adversarial deep learning, A collected 500 samples to build its classifier CA. From
a practical attack point of view, it is critical to shorten this initial learning period of
A before jamming starts. For that purpose, J builds the GAN to generate synthetic
data samples based on a small number of real data samples in a short learning period.
Then it uses these synthetic data samples to augment its training data, as discussed
in Sect. 3.3.

The conditional GAN is implemented in TensorFlow [32] by using the FNNswith
three hidden layers each with 128 neurons for both generator and discriminator of the
GAN. Leaky ReLu is used as the activation function. Adam optimizer [19] is used
as the optimizer to update the weights and biases. The output of each hidden layer

Table 3 Effect of different attack types on the transmitter’s performance [57]

Attack type Throughput Success ratio (%)

No attack 0.766 95.75

Adversarial deep learning 0.050 6.25

Sensing-based attack (τ = 3.4) 0.140 16.99

Sensing-based attack (τ = 4.7) 0.576 69.90
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is normalized (via batch normalization). Figure22 shows the losses of generator and
discriminator. Note that the losses fluctuate significantly when the GAN training
starts and eventually converges after 3000 iterations of the GAN training process.

The similarity between real and synthetic data distributions are measured by the
Kullback-Leibler (KL) divergence. The KL divergence is given by

DKL(P‖Q) = −
∑

x∈X
P(x) log

(
Q(x)

P(x)

)
(14)

for two distributions P and Q with the support over X. Denote P as the distribution
of synthetic data samples (generated by the GAN), Q as the distribution of real
samples, and c as the random variable for the channel status (c = 0 if idle and c = 1
if busy). Define Pi (x) = P(x |c = i) for i = 0, 1. Then, DKL(P0‖Q0) = 0.1117 and
DKL(P1‖Q1) = 0.1109. The test time per sample is measured as 0.024ms (much
smaller than the channel coherence time). If sensing results are obtained per second
and 500 measurements are made, it takes 500s to collect 500 RSSI levels without
using the GAN. It takes 23s to train the GAN using a GeForce GTX 1080 GPU and
generate 500 synthetic samples from the GAN. Since 10 real samples are collected
over 10 s, it takes 33s to prepare data with the GAN. Hence, the GAN significantly
reduces the data collection time before A starts jamming.When A builds its classifier
CA based on 10 real data samples, the error probabilities are 19.80% for false alarm
and 21.41% for misdetection. After adding 500 synthetic data samples, the error
probabilities drop to 7.62% for false alarm and to 10.71% for misdetection, namely
close to the levels when 500 real data samples are used to train the DNN.
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Fig. 22 Discriminator and generator losses during training [57]
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4.3 Other Attacks Based on Adversarial Deep Learning

There are various other wireless attacks that can be launched through adversarial
machine learning. A brief taxonomy of attacks from the conventional settings to
adversarial machine learning is shown in Fig. 23.

Spectrum Poisoning Attack Adversarial deep learning can be also used to launch
over-the-air spectrum poisoning attacks [75]. Using the results of exploratory attack,
the adversary falsifies the transmitter’s spectrum sensing data over the air by transmit-
ting during transmitter’s short spectrum sensing period. Depending on whether the
transmitter uses the sensing data as test data to make transmit decisions or for retrain-
ing purposes, either it is fooled into making incorrect decisions (evasion attack), or
the transmitter’s algorithm is retrained incorrectly (causative attack). Both attacks
substantially reduce the transmitter’s throughput. Note that these attacks differ from
the SSDF attack, since the adversary does not participate in cooperative spectrum
sensing and does not try to change channel status labels directly. Instead, the adver-
sary injects adversarial perturbations to the channel and aims to fool the transmitter
into making wrong spectrum access decisions. A defense scheme can be applied
by the transmitter that deliberately makes a small number of incorrect transmis-
sions (selected by the confidence score on channel classification) to manipulate the
adversary’s training data. This defense effectively fools the adversary and helps the
transmitter sustain its throughput [75].

Another attack that targets spectrum sensing is priority violation attack [77],
where the adversary transmits during the sensing phase by pretending to have higher
priority (e.g., emulating primary user behavior) and forces a target transmitter into
making wrong decisions in an evasion attack.

Evasion Attack Against Signal Classifiers Adversarial perturbations can be added
to data samples in the test phase for other wireless communications tasks such as
signal classification [78–81]. In this evasion attack, a receiver aims to classify the

Conventional Wireless 
Attacks

• Jamming
• Eavesdropping
• Spoofing

AML-Driven Wireless 
Attacks

• Inference-based jamming
• Spectrum poisoning
• Signal classifier evasion

Adversarial Machine 
Learning (AML) Attacks 

• Exploratory attacks
• Evasion attacks
• Causative attacks 

Attacks on Cognitive 
Radio

• Protocol violation
• SSDF
• Primary user emulation

Fig. 23 From conventional wireless attacks to adversarial machine learning
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incoming signalswith respect towaveformcharacteristics. In themeantime, an adver-
sary transmits as well such that a carefully controlled interference signal is added to
the received signal and causes the classifier to misclassify the received signal. This
problem was studied in [78, 79] for modulation classification using a CNN-based
classifier. Both white-box and black-box attacks on the deep learning classifier are
shown to be effective in terms of increasing the classification error with small over-
the-air perturbations added to the received signal. References [80, 81] developed
means to prevent an intruder from successfully identifying the modulation scheme
being used.

Overall, the attacks that target spectrum sensing or signal classification transmit
short signals with low power. Therefore, they are more energy efficient and harder to
detect compared to conventional attacks that jam the long data transmission period.

Deep Learning-based Defense Against Wireless Threats In addition to adversarial
deep learning, wireless security threats have been studied with defense mechanisms
based on deep learning. Against jamming attacks, [82] developed a deep Q-network
algorithm for cognitive radios to decide whether to leave an area of heavy jamming or
choose a frequency-hopping pattern to defeat smart jammers. Reference [83] trained
a CNN network to classify signals to audio jamming, narrowband jamming, pulse
jamming, sweep jamming, and spread spectrum jamming. Reference [84] applied
a wavelet-based pre-processing step that highlights the disrupted parts of the sig-
nal before classifying signals as jammers using a CNN. Another example is signal
authentication with deep learning as an IoT application. Reference [85] presented
a deep learning solution based on a long short-term memory (LSTM) structure to
extract a set of stochastic features from signals generated by IoT devices and dynam-
ically watermark these features into the signal. This method was shown to effectively
authenticate the reliability of the signals.

4.4 Defense Against Adversarial Deep Learning

A typical first step of adversarial deep learning is the exploratory attack where A
builds the surrogate classifier CA to infer the transmit behavior of T . An effective
defense follows fromdisrupting the training process ofCA. In this defense, T does not
always follow the labels returned byCA and changes them for someof its data samples
when making transmit decisions [57]. In particular, T changes the label “ACK”
(i.e., “a successful transmission”) to “No ACK” (i.e., “no successful transmission”),
and vice versa. This way, A’s training data is manipulated and A cannot build a
reliable classifier in the exploratory attack. As T poisons the training process of
A by providing wrong training data, this defense corresponds to a causative (or
poisoning) attack of T back at J . By deliberately taking wrong decisions in certain
time slots, T does not transmit even if channel is predicted as idle, and transmits
even if channel is predicted as busy.
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While this defense increases the uncertainty at A, there is a trade-off in the sense
that wrong transmit decisionswould reduce the transmission success of T . Therefore,
T needs to decide to flip its decision in a small number of carefully selected time
slots. Let pd denote the percentage (%) of time slots in which T decides to flip labels.
pd is considered as a defense budget. T uses the likelihood score ST (t) (namely the
likelihood of whether a channel is idle) returned by DNN to decide when to take the
defense action. If ST (t) is less than a threshold η, T classifies a given time slot t as
idle; otherwise T classifies it as busy. When ST (t) is far away from η, then such a
classification has a high confidence; otherwise the confidence is low. For the FNN
structure used in previous subsection, η = 0.25, which is chosen to minimize eT .
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To optimize the defense mechanism, T performs defense operations in a time slot t
when ST (t) is close to 0 or 1, since T ’s transmission decisions are more predictable
in such a time slot. Subject to pd values, T changes labels in different time slots and
A ends up building different classifiers with different hyperparameters compared to
the previous case of no defense.

Figure24a shows the results when T operates with different defense budgets.
As pd increases, A’s error probabilities and T ’s throughput start increasing signifi-
cantly. T ’s throughput reaches maximum when pd = 10%. As pd increases further,
the growth in A’s error probabilities saturates and cannot compensate the errors in
channel access decisions anymore. As a result, T ’s throughput starts decreasing. To
determine the best value of pd , T can start attack mitigation with a fixed level of pd
and then gradually increase or decrease pd in response to changes in its throughput
that is measured through the received ACK messages. Figure24b shows how pd is
adapted over time to optimize the throughput.

Take-away: This section showed that deep learning can be effectively used in
an adversarial setting to launch successful attacks to reduce communication perfor-
mance. In turn, the adversary can be fooled by manipulating its sensing data samples
at certain time instances that are selected by deep learning prediction results.

5 Conclusion

Deep learning has made rapid strides in addressing unique challenges encountered
in wireless communications that need to learn from and adapt to spectrum dynamics
quickly, reliably, and securely. We presented the recent progress made in applying
deep learning to end-to-end (physical layer) communications, spectrum situation
awareness, and wireless security. First, we discussed how to formulate transmitter
and receiver design at the physical layer as an autoencoder that is constructed as
DNNs. We showed that this formulation captures channel impairments effectively
and improves performance of single and multiple antenna, and multiuser systems
significantly compared to conventional communication systems. Second, we showed
that deep learning can help with channel modeling and estimation as well as signal
detection and classificationwhenmodel-basedmethods fail. TheGANcan be applied
to reliably capture the complex channel characteristics for the purpose of channel esti-
mation or spectrum data augmentation, while CNNs can improve the signal classifi-
cation accuracy significantly compared to conventionalmachine learning techniques.
Third, we discussed the application of adversarial deep learning to launch jamming
attacks against wireless communications. Starting with an exploratory attack, the
adversary can use DNNs to reliably learn the transmit behavior of a target commu-
nication system and effectively jam it, whereas a defense mechanism can fool the
adversary by poisoning its DNN training process.

The research topics discussed in this chapter illustrated key areas where deep
learning can address model and algorithm deficits, enhancing wireless communica-
tions. The progress so far clearly demonstrated that deep learning offers new design
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options for wireless communications and enhances spectrum situational awareness,
while adversarial use of deep learning poses an emerging threat to wireless com-
munications and casts communications and sensing into an interesting adversarial
game. Numerous additional deep learning applications in wireless communications
are on the horizon, which will potentially change the way we model, design, imple-
ment, and operate new generations of wireless systems, and shift the field to be more
data-centric than ever before.
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Identifying Extremism in Text Using
Deep Learning

Andrew Johnston and Angjelo Marku

Abstract Various forms of terrorism have become increasingly relevant in today’s
world. Consequently, the utilization of the web by various terrorist groups to spread
propaganda, communicate and organize has increased. However, techniques to effec-
tively identify such material are lacking. This chapter explores an approach which
can classify any piece of text as belonging to one of four extremist groups: Sunni
Islamic, Antifascist Groups, White Nationalists and Sovereign Citizens. This clas-
sification is performed by LSTM models, which will be proven to be much more
effective than non-deep learning approaches. This chapter will describe the perfor-
mance of various models in detail. The process of creating good quality datasets for
each extremist category and the unique challenges such a task presents will also be
explored.

Keywords Deep learning · Terrorism · LSTM · Extremism · Text classification ·
Logistic regression

1 Introduction

Terrorism has been on the rise within the United States in the past decade [1]. More-
over, groups like ISIL and al-Qaeda have mounted aggressive online campaigns to
identify disenfranchised youth in Western countries and encourage them to perform
acts of terror or migrate to hot-zones within theMiddle East. These recruitment mes-
sages often come in the form of visually-appealing propaganda, such as the Dabiq
and Rumiyah, magazines published by the ISIL in a variety of languages. These
magazines contain messages justifying the terrorist cause as well as giving in-depth
explanations of how to build destructive devices. Inspire, a similar publication run
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by al-Qaeda, created the infamous article “Make a bomb in the kitchen of youMom”
as shown in Fig. 1.

International terror organizations are following the lead of many domestic terror
organizations that utilize the Internet’s affordability and reach to identify and recruit
members. Websites such as Stormfront, a website dedicated to Neo-Nazi and White

Fig. 1 An inspire article describing how to make improvised explosive devices (IEDs)
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Fig. 2 The main page of the Stormfront website, a Neo-Nazi and White Supremacist organization

Supremacist ideologies since November 1996 [2] are increasingly used for this pur-
pose. Figure 2 shows the main page of Stormfront. Its ideology is described using
the term “race realism,” a phrase utilized by White Supremacists.

Although sites like Stormfront and publications such as Dabiq, Rumiyah, and
Inspire are well-known, terror recruiting has also taken to more mainstream social
media sites. Tumblr, a popular blogging platform, has become a favorite among ISIS
to recruit Westerners to the cause [3] as shown in Fig. 3.

Similarly, Twitter has become a favorite platform for ISIS members to promote
propaganda. Although many of the Twitter accounts eventually become suspended,
preliminary investigation suggests that there may be over 170,000 active ISIS related
accounts on Twitter [4].

For members of law enforcement and intelligence communities, finding, investi-
gating, and stopping online terrorism is a significant challenge. Given the massive
size of social media networks, scrutinizing every post would be a monumental task.
Consequently, such professionals must choose between a variety of sub-par methods
to find new terrorist-created content.

The first strategy is to identify a “lead”, which is a known account or a post that
promotes terrorism. Using information derived from the post such as interactions
with the post (replies, retweets, likes, or favorites), a professional can seek to identify
related accounts and begin mapping out a network of potentially suspicious accounts
for further investigation. The principal problem with such a method is that it is
limited to the network of users identifiable through investigating the principal lead.
If a separate network of terrorists has no interaction with the network of the initial
target, they likely will not be identified through this method.

The second method involves using search engines and similar tools (such as a
Twitter search) to identify posts of interest using keywords. The Department of
Homeland Security (DHS) created the Analyst’s Desktop Binder that details words
and phrases related to terrorism and similar security concerns [5]. An excerpt of
potential search terms in the Binder is shown in Fig. 4.

Although terrorists could potentially be identified using these terms, such an
approach is fundamentally limited. In order to maintain usefulness, such a list would
have to be regularly updated to include new terms and techniques as well as casual or
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Fig. 3 A ISIS-affiliated
terrorist posting on Tumblr

slang terms. Moreover, such a list would have to include translations of terms as well
as various transliterations. Even with a more comprehensive list, this strategy is still
fallible to obsfucation techniques such as the usage of homoglyphs. For example,
a terrorist wishing to evade detection through searching might replace the word
“jihad” with “j1had”. Although the substitution of the number one for the letter “I”
would likely not confuse English readers, it would evade plain searches for the term
jihad. Moreover, searching as a principal technique will yield a significant amount of
false positives, such as news stories or tangential posts. For instance, the term “plot”
referenced in Fig. 4 could appear in a post describing a “terrorist plot” as well as a
post about the plot of a movie or even a typographical error from a user attempting
to type “pot” in a post that otherwise would be considered entirely benign.
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Fig. 4 Potential search terms proposed by the DHS for identifying terrorist propaganda

In this chapter, we describe the process and results of creating models to detect
different types of extremism. With a focus on Sunni, radical leftist (“Antifa”), White
Supremacist, and Sovereign Citizen extremism, we describe the process of creat-
ing datasets and building models that can identify terrorist propaganda and analyze
their ability to withstand techniques such as obfuscation with homoglyphs. We also
analyze public datasets and justify the need for the creation of larger, more com-
prehensive datasets for counterterrorism research. With our results, we demonstrate
the necessity of deep learning approaches to building such models and describe the
applications suchmodels could have in themodern fight against domestic and foreign
terror.

2 Background

The motive for terrorism varies wildly depending on the underlying methodology.
The difference in motive often has a significant impact on terminology and the
structure of propaganda that must be taken into account when developing models to
identify such material. In this section, we will give a brief overview of the terrorist
ideologies we are investigating and their propaganda techniques.

Sunni extremism, the parent ideology of well-known terror groups such as al-
Qaeda and ISIL, is centered on the establishment of an Islamic government (a
“caliphate”) and the dismantlement of governments deemed incompatible with
Islamic ideology, such as the majority of Western governments. Groups such as
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ISIL have established themselves as archetypal Islamic government and consider
themselves an independent state [6]. Terrorism is often referred to as “jihad” and is
considered by Sunni extremist groups to be a defensive action [7]. Moreover, Sunni
extremism is notable for the justification of suicide-based attacks where the attacker
mounts an attack that will likely kill themselves in the process, such as suicide
bombing. This justification is established through Sunni extremism groups issuing
proclamations (“fatwas”) that such suicide attacks are considered to be martyrdom
for the cause rather than suicide, which is otherwise impermissible [8]. Consequently,
propaganda often glorifies such suicide operations, with groups such as ISIS publicly
condoning such operations in the global media [9].

White Supremacy is centered on the belief that non-white races are principally
responsible for societal problems and crime. White Supremacy is also blended with
anti-Semitic and Neo-Nazi ideologies. Figure 5 shows a Reddit posting consistent
with White Supremacist ideology.

White Supremacists are responsible for violence, but often lack the group cohe-
sion of other terrorist groups, instead committing violence in “lone wolf” attacks.
For example, James Jackson murdered an African American in hopes of the attack
provoking a “race war”, a concept in White Supremacist ideology where interracial
conflict is strong enough to provoke continued violence [10]. Although historically-
relevant White Supremacist groups such as the Ku Klux Klan (KKK) still operate
within the United States, their numbers are decreasing with current membership
numbers estimated to be around 5,000 to 8,000 [11]. Likewise, KKK groups have
dwindled due to internal conflict and successful government operations [11]. Neo-
Nazi groups often adoptWhite Supremacist language but have amore specified intent
of re-establishing National Socialism as prescribed by the German Nazi party of the
SecondWorldWar. Figure 6 demonstrates the close ties betweenWhite Supremacist
and Neo-Nazi ideologies. The flyer contains both overt references to Nazism, such
as the swastika, as well as references to topics common in White Supremacist pro-
paganda, such as “mass immigration” and “degeneracy”. In White Supremacist pro-
paganda, “degeneracy” is the belief that modern culture has led to a loss of ethics
and traditional values and will lead to the decline of civilization.

Antifacist groups, commonly referred to as “Antifa”, have recently been identified
as terrorist groups within the United States. Antifa ideology claims to be focused
on preventing growth of Neo-Nazi and White Supremacist groups, but Antifascists

Fig. 5 A Reddit posting from a subforum dedicated to White Supremacy
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Fig. 6 A propaganda flyer
demonstrating the link
between Neo-Nazi and
White Supremacist
ideologies

have often attacked political conservatives and police officers, claiming such victims
are secretly in favor of Neo Nazi or White Supremacist ideologies. Moreover, Antifa
have been known to attack journalists covering Antifa protests without provocation
from the journalists [12]. Conservative journalist Steven Crowder, host of the pod-
cast Louder with Crowder, captured footage while undercover with Antifa during
their preparations to protest and attack attendees of a talk given by notable Jewish
Conservative Ben Shapiro, who they considered to be a Neo-Nazi [13]. Their inves-
tigation demonstrated a willingness of the Antifa group to provoke armed conflict,
using weapons such as ice picks, combat knives, semi-automatic rifles, and illegally
modified shotguns [13]. Overtly, many Antifa organizations characterizes their vio-
lence as limited to defense from attacks from Neo-Nazi terrorists, often using the
phrase “Bash the Fash” (referring to Fascists) in public propaganda, as shown in
Fig. 7.

Critical to Antifa philosophy is the concept of “dog whistles”, which are allegedly
covert references to White Supremacist or Neo-Nazi ideologies intended to signal a
person’s true belief. One such claimed dog whistle is the “OK” hand sign made by
raising three fingers while holding the thumb and index finger together in a circle.
The sign purported is a reference to the phrase “White Power” due to the fingers
making the approximate shapes of a “W” and “P”. One White House intern was
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Fig. 7 An Antifa protest sign using the phrase “Bash the Fash”, a common Antifa call to violence

labelled as a Nazi by Antifa groups for allegedly utilizing the dog whistle in a White
House photo, shown in Fig. 8.

Sovereign Citizen terrorist groups, also sometimes referred to as “Freemen on the
Land,” are groups purporting to be exempt from themajority ofUnitedStates laws due
to a difference in interpretation of law. Sovereign Citizens are known for encounters

Fig. 8 Antifa groups claimed the White House intern was using a “dog whistle” to indicate White
Supremacist beliefs
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Fig. 9 An Irish Sovereign Citizen sign
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with law enforcement while utilizing fraudulent documents, such as license plates,
driver’s licenses, and currency [14]. These encounters are more frequently turning
violent, resulting in the death of police officers who believed they were performing
routine traffic stops; such occurrences have warranted the Florida Sherriff’s Depart-
ment to issue specialized training for handling suspects that are potentially Sovereign
Citizens [15]. A key belief is that the legal name of a citizen is used by the govern-
ment to ensnare unknowing people (i.e. everyone except Sovereign Citizens) into
performing civic duties that Sovereign Citizens believe are optional, such as pay-
ing taxes, purchasing various licenses, or receiving punishment after being judged
guilty in a court of law [16]. Consequently, Sovereign Citizens will use a combina-
tion of various legal terms when referring to themselves, such as a person named
“John Doe” referring to themselves as “John Doe, Executive Trustee for the Private
Contract Trust known as JOHN DOE” [16]. Sovereign Citizens are known to be
more organized than other domestic terror groups, and have demonstrated interest in
armed takeovers, such as the 2014 takeover of the Malheur National Wildlife Refuge
Headquarters, where Sovereign Citizens occupied a federal building to demand that
the federal government return land to the state governments. Although the standoff
ended with only one casualty and one injury (both Sovereign Citizens), such events
could embolden future, more lethal events. Enabling the spread of the ideology is the
easily obtainable fake documents and signs, such as the one from an Irish Sovereign
Citizen group shown in Fig. 9.

Although terror groups may vary in motive and intentions in their ideology, the
core tenants are the same: they wish to do harm to those that do not subscribe to their
ideology and strike fear into society at large. Moreover, the increasing prevalence of
such terror groups indicate that traditional methods of identification and dismantling
are failing to counter the threat posed by internet-enabled terror groups.

3 Dataset

The primary challenge of creating models to identify terrorist propaganda is assem-
bling appropriate datasets. Given the covert nature of such groups, identifying mate-
rial to use can be challenging. Moreover, many social media sites will quick block
and suspend material as well as accounts known to promote such material, making
leads on the location of such material expire quickly.

In order to utilize most deep learning methods, a binary dataset has to be estab-
lished.While identifyingmaterial for the extremist label is relatively straightforward,
identifying relevant data for the benign label is more challenging. Arbitrary benign
data such as web pages on miscellaneous topics can serve some value, but the benign
dataset also needs curated texts to prevent common sources of false positives. These
curated texts can include news articles, religious texts, and encyclopedia entries.
Such curation can prevent common sources of error such as articles discussing events
involving extremism that lack support for the causes being discussed. Likewise, the
inclusion of religious texts in benign datasets can prevent errors resulting from the
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quotation of religious literature being mistaken for religiously motivated types of
extremism such as Sunni extremism or White Nationalism. Although extremist pro-
paganda may include religious quotations or references, the presence of such is not
sufficient to identify material as extremist.

In this section, strategies to compile datasets for different forms of extremism
will be discussed. These datasets will be utilized in later sections to develop models,
and the importance of inclusion of certain curated materials for the benign class
will be justified. Moreover, certain examples from each class will be highlighted to
demonstrate the insufficiency of traditional text mining models for the task.

3.1 Sunni Extremism

The Sunni extremism dataset compiled in “Identifying Sunni Extremism” by John-
ston andWeiss [17] utilized a team of 40 researchers, with experience in intelligence
gathering and Middle Eastern culture, Islam, as well as fluency in multiple dialects
of Arabic and Farsi. Using compiled intelligence reports from sources such as SiTE
Intelligence Group [18], sites hosting known terrorism material such as JustPasteIt
[19] and AddPostIt [20] were identified. These sites are “paste” sites, allowing users
to upload arbitrary content such as text and images to a unique URL that can be
shared. A technique to identify all valid URLs was identified, and the posts were
scraped. The researchers separated those promoting Sunni extremism from “benign”
posts of unspecified topics. During the categorization, no materials from other ter-
ror groups were identified. Benign posts did contain material promoting criminality
(e.g. cybercrime, drug trafficking, etc.) that was deemed lacking in any demonstrable
links to terrorist propaganda. Figure 10 shows a post from JustPasteIt describing the
writer’s hijra (journey, in this case to ISIL-controlled territory) for the purpose of
committing terrorism (i.e. “waging jihad”).

Fig. 10 A post from JustPasteIt promoting joining ISIL
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Fig. 11 The breakdown of data for the Sunni dataset

To add additional substance, the extremist dataset was supplemented with issues
of the Dabiq, Rumiyah, and Inspire magazines in English as curated by the Clarion
Project [21]. Thesemagazines are often over one hundred pages in length, containing
high-definition full-quality images and numerous articles. For the purposes of the
dataset, the text was copied from the articles, with content such as page numbers
removed.

For this chapter, a set of Tumblr posts containing extremism were identified and
added to the extremist label using the same team as utilized in the original Johnston
and Weiss paper [17]. These posts were identified via an initial lead from JustPasteIt
where a singleTumblr blogwas linked. Investigations into this user yielded additional
Tumblr users posting extremist Sunni content that were also parsed and added to the
dataset.

The breakdown of data by source is shown in Fig. 11, where the size of each
dataset is counted in words.

3.2 White Nationalism

Given the identified “lone wolf” nature of White Supremacists, identifying suitable
content was difficult. Parsers were written to extract posts from Stormfront [22].
A similar forum, known as the Vanguard News Network (VNN) Forum [23], was
identified andpostingswere scraped.Moreover, investigation identified theAmerican
Freedom Party, formerly known as the American Third Position Party [24]. The
American Third Position Party promotes White Supremacism as a mainstay of their
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Fig. 12 The breakdown of data for the White Supremacist dataset

political ideology. Content from the “Featured Articles” section of their website,
which is dedicated to providing White Supremacist perspective on current events,
was scraped and added to the dataset.

Likewise, an existing dataset consisting of hate speechTwitter posts [25]was iden-
tified and included. The original dataset was manually reviewed to remove content
irrelevant to White Supremacy.

The breakdown of the data for the White Supremacist dataset is shown in Fig. 12.
Note thatwhile Twitter datawas included, its small size compared to the other sources
prevents the graph from displaying the actual percentage of data from Twitter.

3.3 Antifa

SincemanyAntifa groups are regionally focusedwithin theUnited States, few central
forums with large populations of active users were identified. Instead, data from
multiple smaller, regionalAntifa groupswere supplementedwith data froma singular
large Antifa forum.

NYCAntifa [26] is a group focused on Antifa activities within the New York City
region. While this site lacks a forum, it contains a number of pages published by
the group promoting Antifa activities and giving detailed information in regards to
their position and prospective members. Similarly, the Nomattimen [27], Antifacist
Network [28], London Antifacists [29] andMalatesta [30] sites were similarly struc-
tured (i.e. blog postings without substantial user interaction) but contained a large
amount of content in article format.
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Fig. 13 The breakdown of data for the Antifa dataset

The largest singular source was RevLeft [31], an Antifa forum with a sizeable
active population and topics covering the theory, history, and practice of Antifa
membership. This site contained approximately 2.8 million postings of which a
substantial portion were retrieved. Certain forum categories, such as the “off topic”
category, were not added to prevent irrelevant material from being added to the
extremist label.

The breakdown of the sources for the Antifa dataset are shown in Fig. 13.

3.4 Sovereign Citizens

Sovereign Citizens are more prolific than other forms of terrorism and a wide variety
of content was available. Many of the Sovereign Citizen websites contained both a
populated and updated articles section as well as an active forum. For the identified
websites, all such relevant material was added to the dataset.

A Free Country [32] is a Sovereign Citizen groupwith awebsite that contains both
a considerable number of articles aswell as an active forum. This content was scraped
and analysis was performed to prevent duplicates caused by the articles (which were
written by an active forum members) being reposted as forum posts. Hashing-based
methods were utilized to ensure retrieved documents were not reproduced in their
entirety. This situation appears unique to this site as other sites with both forums and
articles did not appear to exhibit the same level of reproduction.

Websites such as Embassy of Heaven [33], FreeMan NZ [34], and Natural Person
[35] contain article-style postings with no opportunity for user interaction. These
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Fig. 14 The breakdown of the Sovereign Citizen dataset

articles cover a variety of instructional material as well as justification and analysis
of Sovereign Citizen theory.

A resource titled “The Global Sovereign’s Handbook” [36] was identified from
a website that tracks terrorist material and individuals. This handbook contained
explanations for the origin of the Sovereign Citizen movement as well as detailed
instructions on how to resist the government and subvert laws. The handbook totaled
approximately 300 pages of content.

Two of the larger Sovereign Citizen forum websites identified were Sui Juris
Forum [37] and Freemen on the Land forum [38]. The principal topic of bothwebsites
were instructions on how to utilize SovereignCitizen ideology in interactionswith the
government andpromotingviolent resistance to opposewhat is viewedas government
interference. Specific instructions were given on how to resist legal process, such as
traffic stops and searchwarrants, as well as instructions on how to fight criminal court
cases according to Sovereign Citizen theory. A similar but smaller forum, Family
Guardian [39] was also included. This forum promoted Sovereign Citizen ideology
using an interpretation of Christianity to justify Sovereign Citizen beliefs.

Figure 14 shows the breakdown of the Sovereign Citizen dataset.

3.5 Benign Material

For benign material, Johnston and Weiss utilized material obtained from the paste
sites that was considered not to be related to Sunni extremist terror in any way;
moreover, no such data was identified that was relevant to other forms of extremism.
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This dataset was supplemented with datasets of news articles [17] as well as an
English copy of the Qu’ran. The intent of such inclusions was to minimize the
likelihood that the model would associate the presence of a singular word (e.g.
“Syria” or “jihad”) with extremism.

For the purposes of this chapter, the benign dataset is the same for all forms
of extremism. Given that benign content is relatively poorly-defined compared to
extremist material, it would be challenging to develop substantial, unique benign
datasets for each form of extremism. A consequence of this strategy is that all
curated materials for the benign label are included, regardless of the ideology being
tested. During testing, model performance was acceptable without modification of
the dataset for each form of extremism, and consequently work into creating distinct
benign datasets was not performed.

This chapter utilizes the benign dataset used in Johnston and Weiss [17] but we
make substantial additions. For example, the benign dataset was supplemented using
a copy of the King James Bible. During experimentation with the model after the
publication of the Johnston andWeiss paper, a number of pages quoting or including
long passages of the Christian Bible were listed as extremist. This could be the result
of the linkage of Islam and Christianity (as both are Abrahamic religions) for Sunni
extremist models and more generally the model could be confused due to the violent
nature of certain passages. The reasoning behind including the King James Bible
matched that of including the Qu’ran: religious content in isolation is not extremist.

Fig. 15 The breakdown of the benign dataset
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Moreover, the benign category was supplemented with an open-source database of
Reddit comments [40] and news articles [41, 42] unique from the ones originally
added. The intent of adding such data on unspecified topics was to increase the
variety and complexity of the benign dataset (Fig. 15) to yield a model more capable
of distinguishing extremist content.

4 Building the Models

To demonstrate the necessity of deep learning models, we trained both long-short
term memory (LSTM) deep models as well as logistic regression models. To make
the data suitable for use, we performed a variety of preprocessing actions dependent
on the model. For all models, we removed documents with fewer than 30 words to
prevent poor-quality examples from being included.

For LSTMmodels, we utilize TensorFlow VocabularyProcessor with a maximum
document length of 200 words. The input layer takes vectors of size 200, mapping
to a dropout layer of 128 neurons with a dropout of 0.5. The dropout layer feeds
into a fully-connected layer with softmax activation and the Adam optimizer, with a
learning rate of 0.001 and categorical cross-entropy as the loss function. The model
was trained for ten epochs with 70% of data being used for training, 10% being used
for validation, and 20% for testing.

For logistic regression, Gensim doc2vec was used in the same configuration as
Johnston and Weiss [17] except the vector size for doc2vec was configured at 100.
The inverse of regularization strength hyperparameter was set to 1.0. Similar to the
LSTM model, 70% of data was used for training and 30% of data was used for
testing.

5 Results and Analysis

Table 1 demonstrates the results of each model and dataset combination.
Interestingly, the Antifa LSTM model did exceptionally poorly, classifying all

data as benign. Considering that logistic regression was able to identify distinctions
between each class, the poor performance could be attributed to a dearth of Antifa
content or poor hyperparameter choice. However, the same configuration of LSTM
performed well with other datasets.

Despite the Antifa’s models poor performance, we can see that accuracy is signifi-
cantly better using the deepmodel (p < 0.0001); however, F1 score is not significantly
better (p > 0.05). Removing the Antifa results from the calculation, we can see that
the LSTMmodels’ F1 score is significantly better than logistic regression (p < 0.01).
It is reasonable to exclude the poor performance of the Antifa model seeing as the
Antifa LSTM degenerated and did not predict any content in the extremist class, a
sharp departure from the performance of the other models.
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Table 1 Performance by
model type and dataset

Model Dataset Accuracy F1 score

LSTM Sunni 90.69 0.91

Antifa 83.97 0.77

Sovereign Citizen 88.65 0.88

White Supremacist 88.37 0.88

Average 87.92 0.86

Log. Reg. Sunni 70.35 0.79

Antifa 67.46 0.77

Sovereign Citizen 69.67 0.79

White Supremacist 65.41 0.76

Average 68.2225 0.7775

Also worthy of note is that the LSTM model for Sunni extremism here exhibited
stronger performance than the deep network described in Johnston and Weiss [17]
without the use of a threshold. This better performance can likely be attributed both to
the increased dataset aswell as the ability of LSTMmodels to account for information
such as word ordering, which is not readily identifiable from the doc2vec output used
with the Johnston and Weiss model [17].

As discussed earlier, the benign dataset was kept consistent for all models. Based
on the strong performance of the LSTM models, the inclusion of curated benign
materials that did not necessarily pertain to the form of extremism (e.g. the King
James Bible is unlikely to be confused for Antifa propaganda) did not appear to
prevent the model from performing.

For use in real-world systems, such models would likely benefit from the use of
a threshold system as described in Johnston and Weiss [17]. These models would
likely be ofmost usewhen applied to large datasets, where false positives could result
in the inefficient allocation of investigative resources. During the research for this
chapter, conversations with law enforcement and intelligence professionals were
conducted to understand their preferences for the application of such technology.
Such conversations indicated that a greater false negative would be preferable to a
larger false positive rate within reason. Consequently, imposing a threshold on the
LSTM output would likely be of considerable benefit to professionals. Moreover,
instead of classification using labels, producing output where the raw scores of the
models were utilized could allow law enforcement and intelligence professionals to
prioritize materials classified as extremist with greater confidence first, decreasing
the chance of encountering false positives until a substantial number of materials
were reviewed.
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6 Related Work

Some limitedwork has been done on identifying extremist propaganda usingmachine
learning. Jaki and De Smedt [43] developed models to identify German far-right
hate speech on Twitter. Their model had an F1 score of 0.8421 using a single-
layer perceptron network with a dataset consisting of 100,000 Twitter posts evenly
divided between hate speech and benign content. The hate speech was collected from
over a hundred specific far-right accounts. While the performance of this model is
strong, the limited number of extremist users could allow a model to overfit to those
specific actors. Likewise, the feature vector consisted of character trigrams, word
bigrams, and character unigrams. These features would likely not generalize well
to multilingual applications and are very vulnerable to obfuscation measures such
as the homoglpyh substitution discussed earlier. Futhermore, it is unknown whether
these features will generalize well to larger, potentially less structured works. For
example, it is possible that word usage frequency will vary when an extremist is not
severely limited by character length, as is true for Twitter postings.

Similarly, Ashcroft et al. [44] utilized support vector machines, Adaboost, and
NaïveBayesmodels to classifySunni extremist Twitter posts. Thedatasetwas curated
using a list of known ISIL-favored hashtags (a Twitter feature allowing users to con-
tribute to a larger discussion on a topic by adding a “#” character before a word)
and utilized the presence of such hashtags as well as time-based features. While per-
formance for some models reached 100% accuracy, this work is similarly narrowly-
focused on Twitter posts and the features cannot generalize to other web content.
Likewise, by curating a dataset utilizing a list of hashtags, the dataset could be biased
to a group of extremists within the same organizational structure or sharing a specific
interpretation of ISIL ideology.

Gambäck and Sikdar [45] utilized a deep learning approach to classify tweets
containing racism, sexism, or a combination. The dataset consisted of approximately
6,700 Twitter posts with a clear majority being neither racist nor sexist in nature.
A convolutional neural network using word2vec as a preprocessing step yielded the
best results, with an F1 score of 0.78. The poor performance could likely be attributed
to the imbalance of the dataset as well as the poorly-defined nature of topics such
as sexism and racism. Unlike terrorist ideologies, which are specific in their beliefs,
goals, and tactics, sexism and racism can vary depending on cultural context and are
likely generationally specific. Although the dataset was divided using both a group of
experts as well as a crowdsourcing approach, the labels could have been influenced
by the society in which the expert or crowdsourced user resides. Likewise, the size
of the dataset is small compared to other studies, especially given the brief nature
of tweets. The performance derived from this model would likely not generalize to
more unstructured forms of postings.

The work in this chapter is based off the work of Johnston and Weiss [17]. The
primary limitations of the work were the narrow focus on Sunni extremism as well
as the limited number of models. As mentioned earlier, the models described in the
Johnston andWeiss did not include the Christian Bible, so they would miscategorize
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passages of the Bible as extremist. This work supplements both benign and Sunni
extremist datasets, as well as creating models for other forms of terrorism.

7 Future Work

Building models to recognize terrorism is a critical first step in using deep learning
to combat terrorism. In order to operationalize these models, they need to be incor-
porated into a larger system used by law enforcement and intelligence professionals
such as forensic analysis software or open-source intelligence tools.

Forensic analysis tools are utilized to review storage media in furtherance of an
investigation. Given that large-capacity storagemedia is becoming increasinglymore
affordable, an investigator might need to review terabytes of data in order to identify
material relevant to an investigation. Utilizing these models as a preliminary review
of the material could assist investigators with rapidly triaging material for further
analysis. These models could present a novel solution to the problems of forensic
analysis of text documents.

An interesting application would be to apply the models to finding intelligence
on the darknet. Darknets utilize anonymizing routing softwares such as Tor and
I2P to mutually anonymize both the server and client. Consequently, standard search
engines are incapable of identifying such material and investigate options are limited
as the host of the content cannot be readily identified. Moreover, terror groups have
expressed interest in transitioning to anonymizing software; the most notable being
the “Cyber Kahilafah” ISIL-affiliated terrorist who regularly published material on
how to use Tor to evade law enforcement [46]. These models could be used to
empower a crawler that could identify terrorist materials at scale.

Likewise, these models could have application to private industry. Social media
websites have an interest in limiting terrorist accounts, but require a scalable solution
given the large volume and velocity of posts. Thesemodels could be used in unison to
detect postings that require additional review before publishing, or to audit accounts
nominated for deletion.

A potential extension of this work could include integrating these models with
a system to perform author analysis. Malicious actors might take greater steps to
remain unattributable across different social networks and platforms, such as using
unique usernames or posting under multiple usernames on the same website. An
author analysis platform with extremism models enabled could potentially reveal
investigate leads that would be challenging to identify without significant manual
effort. Likewise, such a systemcould be used to classify different terrorists bywhether
they are known to manufacture novel content or reuse content created by others. This
information could serve to assist investigators with prioritizing extremists with the
knowledge and desire to grow or enable terrorist networks.
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8 Conclusion

These models represent significant progress for the cybersecurity and intelligence
domains. While great progress has been made in fields such as malware analysis,
less effort has been made to identify text content produced by malicious actors. Such
text content could be an important source of investigative leads and consequently
necessitates a more intelligent, scalable solution than manual investigative methods.
While the models in this chapter are limited to identifying extremist propaganda,
it stands to reason that such techniques could be used to identify criminal material
from other domains.

Likewise, this chapter highlights the relative lack of research within the public
data science and cybersecurity community to develop machine learning solutions for
law enforcement and intelligence professionals. Terrorism in particular is a rare focus
and requires greater attention from the research community to identify solutions that
mitigate the spread and capabilities of such actors. As greater numbers of the world
population become active online, modern solutions to online investigative problems
need to be created in order to handle the large and diverse ecosystem of the modern
Internet.
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